دوره 12، شماره 4 - ( مجله کنترل، جلد 12، شماره 4، زمستان 1397 )                   جلد 12 شماره 4,1397 صفحات 1-14 | برگشت به فهرست نسخه ها

XML English Abstract Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Shabani A, Fatehi A, Soltanian F, Jamilnia R. Design of nonlinear continuous time predictive controller by solving the differential-algebraic equations with boundary conditions using homotopy perturbation method. JoC. 2019; 12 (4) :1-14
URL: http://joc.kntu.ac.ir/article-1-553-fa.html
شعبانی آذر السادات، فاتحی علیرضا، سلطانیان فهیمه، جمیل نیا رضا. طراحی کنترل کننده پیش بین غیرخطی زمان پیوسته با حل دستگاه معادلات دیفرانسیل – جبری با شرایط مرزی به روش اختلال هموتوپی . مجله کنترل. 1397; 12 (4) :1-14

URL: http://joc.kntu.ac.ir/article-1-553-fa.html


1- دانشگاه پیام نور
2- دانشگاه صنعتی خواجه نصیر الدین طوسی
3- دانشگاه گیلان
چکیده:   (841 مشاهده)
در این مقاله طراحی کنترل کننده پیش بین زمان پیوسته و حل معادلات دیفرانسیل-جبری حاصل از آن با استفاده از روش نیمه تحلیلی اختلال هوموتوپی ارائه شده¬است. در هر لحظه بروزرسانی الگوریتم کنترل پیش بین زمان پیوسته، می بایست یک مساله کنترل بهینه حلقه باز حل شود. به منظور حل مساله کنترل پیش-بین به صورت زمان پیوسته، مساله کنترل بهینه مذکور بایستی به روش غیرمستقیم حل شود. به این ترتیب که با بکارگیری حساب تغییرات و اصل حداقل یابی پونتریاگین، شرایط لازم و کافی بهینگی مستخرج می شود. در این مقاله نشان داده می شود که مساله طراحی کنترل کننده پیش بین زمان پیوسته با حل یک دستگاه معادلات دیفرانسیل–جبری با شرایط مرزی معادل است. برای حل این دستگاه، روش نیمه تحلیلی اختلال هموتوپی پیشنهاد می شود که نتیجه آن، بدست آمدن تابع کنترل و تابع حالت بهینه است. با داشتن این توابع می توان به آسانی از وضعیت حالت و کنترل در تمامی زمان ها مطلع شد. روش ارائه  شده می تواند برای طراحی کنترل کننده پیش¬بین زمان پیوسته سیستم های خطی، غیرخطی و همچنین سیستم های متغیربازمان بکار رود. به منظور نشان دادن قابلیت و کارایی روش پیشنهادی، چند مثال عددی همراه با شبیه سازی ارائه شده است.
متن کامل [PDF 1418 kb]   (292 دریافت)    
نوع مطالعه: پژوهشي | موضوع مقاله: تخصصي
دریافت: ۱۳۹۶/۱۰/۱۲ | پذیرش: ۱۳۹۷/۵/۲۷ | انتشار: ۱۳۹۸/۲/۱۴

فهرست منابع
1. [1] Kirches C., Wirsching L., Bock J.P, 2012, "Efficient direct multiple shooting for nonlinear model predictive control on long horizon", Schloder Journal of Process Control 22, pp. 540- 550. [DOI:10.1016/j.jprocont.2012.01.008]
2. [2] Magni L., Scattolini R., 2004, "Model predictive control of continuouse time nonlinear systems with picewise constant control", IEEE transactions on automatic control, vol. 49, NO. 6, pp. 900 - 906. [DOI:10.1109/TAC.2004.829595]
3. [3] Magni L., Scattolini R., 2007, "Tracking of non-square nonlinear continuous time systems with piecewise constant model predictive control", Journal of Process Control 17, pp. 631-640. [DOI:10.1016/j.jprocont.2007.01.007]
4. [4] Wang L., 2001, "continuous time model predictive control design using orthonormal functions", INT.J.control, vol. 74, NO. 16, pp. 1588-1600. [DOI:10.1080/00207170110082218]
5. [5] Cizniar M., Fikar M., Latifi M.A., 2008, "Design of constrained nonlinear model predictive control based on global optimization", 18th European Symposium on Computer Aided Process Engineering - ESCAPE 18 Bertrand Braunschweig and Xavier Joulia (Editors). [DOI:10.1016/S1570-7946(08)80099-5]
6. [6] Findeisen R., Raff T., Allgower F., 2007, "Sampled-Data Model Predictive Control for Constrained Continuous Time Systems," Advanced Strategies in Control Systems with Input and Output Contraints, pp.207-235. [DOI:10.1007/978-3-540-37010-9_7]
7. [7] Li S.E., Xu SH., Ku D., 2016, "Efficient and accurate computation model predictive control using pseudospectral discretization", Neurocomputing, 177, pp. 363-372. [DOI:10.1016/j.neucom.2015.11.020]
8. [8] Chen W.H., 2004, "Predictive Control of General Nonlinear Systems Using Approximation", IEE proceedings: control theory and applications, 151 (2), pp. 137-144. [DOI:10.1049/ip-cta:20040042]
9. [9] Wang, Y., Boyd, S., (2008), "Fast model predictive control using online optimization", The International Federation of Automatic Control,Vol. 41, pp. 6974-6979. [DOI:10.3182/20080706-5-KR-1001.01182]
10. [10] Pannocchia, G., Rawlings, J. B., Mayne, D. Q., Marquardt, M., (2010)," On computing solutions to the continuous time constrained linear quadratic regulator", IEEE Transactions on Automatic Control, Vol. 55, pp. 2192-2198. [DOI:10.1109/TAC.2010.2053478]
11. [11] Daehlen, J. S., Otto Eikrem, G., (2014), "Nonlinear model predictive control using trust region derivative free optimization", Journal of Process Control, Vol. 24, pp. 1106-1120. [DOI:10.1016/j.jprocont.2014.04.011]
12. [12] D.E. Kirk, "Optimal control theory: an introduction", Dover Books on Electical Engineering Series, 2004.
13. [13] T.J. Böhme, B. Frank, "Direct Methods for Optimal Control", In: Hybrid Systems, Optimal Control and Hybrid Vehicles. Advances in Industrial Control. Springer, Cham, 2017. [DOI:10.1007/978-3-319-51317-1]
14. [14] Mangasarian O.L., 1996, "sufficient conditions for the optimal control of nonlinear systems", J. SIAM control, Vol. 4, No. 1. [DOI:10.1137/0304013]
15. [15] He J. H., 1999 "Homotopy perturbation technique", Computer Methods in Applied Mechanics and Engineering , Vol. 178 (3), pp. 257-262. [DOI:10.1016/S0045-7825(99)00018-3]
16. [16] Aslam Noor M., 2010, "Some iterative methods for solving nonlinear equations using homotopy perturbation method", international journal of computer mathematics, Vol. 87, No. 1, pp. 141-149. [DOI:10.1080/00207160801969513]
17. [17] Soltanian F., Dehghan M., Karbassi S.M., 2010, "Solution of the differential algebraic equations via homotopy perturbation method and their engineering applications", International Journal of Computer Mathematics, Vol. 87, No. 9, pp.1950-1974. [DOI:10.1080/00207160802545908]
18. [18] Roozi A., Alibeiki E., Hosseini S.S., Ebrahimi M., 2011, "Homotopy perturbation method for special nonlinear partial differential equations", Journal of King Saud University - Science, vol 23, issue 1, pp. 99-103. [DOI:10.1016/j.jksus.2010.06.014]
19. [19] Ayati Z., Biazar J., 2015, "On the convergence of Homotopy perturbation Method", Journal of the Egyptian Mathematical Society, vol.23 (2), pp. 424-428. [DOI:10.1016/j.joems.2014.06.015]
20. [20] Chen H., Allgower F., 1998, "A Quasi-Infinite Horizon Nonlinear Model Predictive Control Scheme with Guaranteed Stability", Automatica, Vol. 34, No. 10, pp. 1205-1217. [DOI:10.1016/S0005-1098(98)00073-9]
21. [21] Chen H., Allgower F., 1997, "A quasi infinite horizon nonlinear predictive control scheme for stable", IFAC Proceedings Volumes, Vol. 30, No. 9, pp. 529-534. [DOI:10.1016/S1474-6670(17)43203-4]
22. [22] Jadbabaie A., Hauser J., 2005, "On the stability of receding horizon control with a general terminal cost", IEEE Transactions on Automati control, Volume 50, issue 5, pp. 674 - 678. [DOI:10.1109/TAC.2005.846597]
23. [23] Camacho E.F., Bordons C., Model Peredictive Control, Advanced Texbooks in Control and Signal Processing, Springer, Cham, 2004.
24. [24] Fu H.S, Han B., 2006, A homotopy method for nonlinear inverse problems, Applied Mathematics and Computation, vol.183, pp. 1270-1279. [DOI:10.1016/j.amc.2006.05.139]
25. [25] طاهرسیما، حنیف."طراحی کنترل¬کننده هوشمند برای هلیکوپترآزمایشگاهی"، دانشگاه خواجه نصیرالدین طوسی، پایان نامه کارشناسی ارشد، 1385.
26. [26] قربانی، اصغر. "روش اختلال هموتوپی هی و کاربرد آن"، دانشگاه فردوسی مشهد، پایان نامه کارشناسی ارشد، 1386.

ارسال نظر درباره این مقاله : نام کاربری یا پست الکترونیک شما:
CAPTCHA code

ارسال پیام به نویسنده مسئول


کلیه حقوق این وب سایت متعلق به مجله کنترل می باشد.

طراحی و برنامه نویسی : یکتاوب افزار شرق

© 2019 All Rights Reserved | Journal of Control

Designed & Developed by : Yektaweb