Volume 17, Issue 4 (Journal of Control, V.17, N.4 Winter 2024)                   JoC 2024, 17(4): 35-48 | Back to browse issues page

XML Persian Abstract Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Seifouripour Y, Nobahari H. Model-free control of a fixed-wing aircraft based on convolutional neural networks. JoC 2024; 17 (4) :35-48
URL: http://joc.kntu.ac.ir/article-1-983-en.html
1- Sharif University of Technology
Abstract:   (1762 Views)
In this paper, a model-free nonlinear architecture is presented to control a fixed-wing UAV. This architecture has inner and outer loops. The inner loops, which are designed based on convolutional neural networks, control the internal dynamics of the aircraft in a model-free procedure. The outer loops, which use conventional linear controllers, are designed to control the kinematics of the UAV. The neural networks used to control the inner loops are trained offline based on databases to avoid time-consuming online learning processes. These databases are created by simulating simple training models. Then, the input-output data of these training models are pre-processed and mapped to image frames so that they can be given as input to convolutional neural networks. After that, a suitable network structure is selected and the networks are trained based on the mapped databases. These trained networks, together with cascaded linear controllers, are applied to the nonlinear simulation of the fixed-wing UAV and its performance is investigated. The inner loop of the controller that controls the internal dynamics of the UAV has been applied in both single-stage and two-stage forms and their performance has been compared.
Full-Text [PDF 2954 kb]   (62 Downloads)    
Type of Article: Research paper | Subject: Special
Received: 2023/07/30 | Accepted: 2023/12/18 | ePublished ahead of print: 2024/01/1 | Published: 2024/01/21

References
1. [1] Perdikis, T., & Psarakis, S. (2019). A survey on multivariate adaptive control charts: Recent developments and extensions. Quality and Reliability Engineering International, 35(5), 1342-1362. [DOI:10.1002/qre.2521]
2. [2] Benosman, M. (2018). Model‐based vs data‐driven adaptive control: an overview. International Journal of Adaptive Control and Signal Processing, 32(5), 753-776. [DOI:10.1002/acs.2862]
3. [3] Landau, I. D., Lozano, R., M'Saad, M., & Karimi, A. (2011). Adaptive control: algorithms, analysis and applications. Springer Science & Business Media. [DOI:10.1007/978-0-85729-664-1]
4. [4] Zhen, Z., Tao, G., Yu, C., & Xue, Y. (2019). A multivariable adaptive control scheme for automatic carrier landing of UAV. Aerospace Science and Technology, 92, 714-721. [DOI:10.1016/j.ast.2019.06.030]
5. [5] Zhen, Z., Tao, G., Xu, Y., & Song, G. (2019). Multivariable adaptive control based consensus flight control system for UAVs formation. Aerospace Science and Technology, 93, 105336. [DOI:10.1016/j.ast.2019.105336]
6. [6] Andrievsky, B., Kudryashova, E. V., Kuznetsov, N. V., & Kuznetsova, O. A. (2020). Aircraft wing rock oscillations suppression by simple adaptive control. Aerospace Science and Technology, 105, 106049. [DOI:10.1016/j.ast.2020.106049]
7. [7] Outeiro, P., Cardeira, C., & Oliveira, P. (2021). Multiple-model adaptive control architecture for a quadrotor with constant unknown mass and inertia. Aerospace Science and Technology, 117, 106899. [DOI:10.1016/j.ast.2021.106899]
8. [8] Lei, W., Li, C., & Chen, M. Z. (2018). Robust adaptive tracking control for quadrotors by combining PI and self-tuning regulator. IEEE Transactions on Control Systems Technology, 27(6), 2663-2671. [DOI:10.1109/TCST.2018.2872462]
9. [9] Miao, Y., Wang, X., Miao, Y., & Wang, S. (2020). Dynamics and adaptive fault-tolerant flight control under structure damage of horizontal stabilizer. Aerospace Science and Technology, 106, 106135. [DOI:10.1016/j.ast.2020.106135]
10. [10] Xue, Y. X., Zhen, Z. Y., Yang, L. Q., & Wen, L. D. (2020). Adaptive fault-tolerant control for carrier-based UAV with actuator failures. Aerospace Science and Technology, 107, 106227. [DOI:10.1016/j.ast.2020.106227]
11. ]11] نوابی، محمد، و ردایی، محمد. (1393). کنترل تطبیقی سیستم‌های کنترل پرواز در حضور خرابی عملگرها. مهندسی مکانیک مدرس، 14(16 (فوق العاده اسفند))، 83-93. SID. https://sid.ir/paper/177867/fa
12. [12] سازدار, امیرمهدی, نجاتی‌جهرمی, منصور, & شمس, آرش. (1400). کنترل پهپاد کوادروتور با استفاده از روش کنترل تطبیقی مدل مرجع. علوم رایانش و فناوری اطلاعات(1)19, -.
13. [13] Bevrani, H. and Hiyama, T. (2011) Intelligent Automatic Generation Control. (pp. 95-121), CRC Press, Boca Ratons.
14. [14] Gu, W., Valavanis, K. P., Rutherford, M. J., & Rizzo, A. (2020). UAV model-based flight control with artificial neural networks: A survey. Journal of Intelligent & Robotic Systems, 100(3), 1469-1491. [DOI:10.1007/s10846-020-01227-8]
15. [15] Yuksek, B., & Inalhan, G. (2021). Reinforcement learning based closed‐loop reference model adaptive flight control system design. International Journal of Adaptive Control and Signal Processing, 35(3), 420-440. [DOI:10.1002/acs.3181]
16. [16] Koch, W., Mancuso, R., West, R., & Bestavros, A. (2019). Reinforcement learning for UAV attitude control. ACM Transactions on Cyber-Physical Systems, 3(2), 1-21. [DOI:10.1145/3301273]
17. [17] Dooraki, A. R., & Lee, D. J. (2021). An innovative bio-inspired flight controller for quadrotor drones: Quad-rotor drone learning to fly using reinforcement learning. Robotics and Autonomous Systems, 135, 103671. [DOI:10.1016/j.robot.2020.103671]
18. [18] شهبازی, حامد, & تیکنی, وحید. (1397). طراحی کنترل‌کننده غیرخطی پهپاد چهارروتور به کمک روش ترکیبی گرادیان ازدحام ذرات. نشریه مهندسی مکانیک امیرکبیر, 50(5), 989-998. doi: 10.22060/mej.2016.859
19. [19] Nobahari, H., & Seifouripour, Y. (2019, November). A Nonlinear Controller Based on the Convolutional Neural Networks. In 2019 7th International Conference on Robotics and Mechatronics (ICRoM) (pp. 362-367). IEEE. [DOI:10.1109/ICRoM48714.2019.9071803]
20. [20] Dara, S., & Tumma, P. (2018, March). Feature extraction by using deep learning: A survey. In 2018 Second International Conference on Electronics, Communication and Aerospace Technology (ICECA) (pp. 1795-1801). IEEE. [DOI:10.1109/ICECA.2018.8474912]
21. [21] Schiefer, F., Kattenborn, T., Frick, A., Frey, J., Schall, P., Koch, B., & Schmidtlein, S. (2020). Mapping forest tree species in high resolution UAV-based RGB-imagery by means of convolutional neural networks. ISPRS Journal of Photogrammetry and Remote Sensing, 170, 205-215. [DOI:10.1016/j.isprsjprs.2020.10.015]
22. [22] Kyrkou, C., Plastiras, G., Theocharides, T., Venieris, S. I., & Bouganis, C. S. (2018, March). DroNet: Efficient convolutional neural network detector for real-time UAV applications. In 2018 Design, Automation & Test in Europe Conference & Exhibition (DATE) (pp. 967-972). IEEE. [DOI:10.23919/DATE.2018.8342149]
23. [23] Shao, W., Kawakami, R., Yoshihashi, R., You, S., Kawase, H., & Naemura, T. (2020). Cattle detection and counting in UAV images based on convolutional neural networks. International Journal of Remote Sensing, 41(1), 31-52. [DOI:10.1080/01431161.2019.1624858]
24. [24] Padhy, R. P., Verma, S., Ahmad, S., Choudhury, S. K., & Sa, P. K. (2018). Deep neural network for autonomous uav navigation in indoor corridor environments. Procedia computer science, 133, 643-650. [DOI:10.1016/j.procs.2018.07.099]
25. [25] Chhikara, P., Tekchandani, R., Kumar, N., Chamola, V., & Guizani, M. (2020). DCNN-GA: A deep neural net architecture for navigation of UAV in indoor environment. IEEE Internet of Things Journal, 8(6), 4448-4460. [DOI:10.1109/JIOT.2020.3027095]
26. [26] آقابابایی، مجید، موسوی، سیدمحمدرضا، خزایی پول، پیمان، و خویشه، محمد. (1396). بهبود کیفیت تصاویر در ناوبری پهپاد با استفاده از روش فراتفکیک پذیری مبتنی بر شبکه عصبی کانولوشنی با نگاشت چندلایه. دریافنون، 4 (1)، 1-11. SID. https://sid.ir/paper/251899/fa
27. [27] Back, S., Cho, G., Oh, J., Tran, X. T., & Oh, H. (2020). Autonomous UAV trail navigation with obstacle avoidance using deep neural networks. Journal of Intelligent & Robotic Systems, 100(3), 1195-1211. [DOI:10.1007/s10846-020-01254-5]
28. [28] Dai, X., Mao, Y., Huang, T., Qin, N., Huang, D., & Li, Y. (2020). Automatic obstacle avoidance of quadrotor UAV via CNN-based learning. Neurocomputing, 402, 346-358. [DOI:10.1016/j.neucom.2020.04.020]
29. [29] Zhang, Z., Zohren, S., & Roberts, S. (2019). Deeplob: Deep convolutional neural networks for limit order books. IEEE Transactions on Signal Processing, 67(11), 3001-3012. [DOI:10.1109/TSP.2019.2907260]
30. [30] Brownlee, J. (2017). Long short-term memory networks with python: develop sequence prediction models with deep learning. Machine Learning Mastery.
31. [31] Al-Emadi, S., & Al-Senaid, F. (2020, February). Drone detection approach based on radio-frequency using convolutional neural network. In 2020 IEEE International Conference on Informatics, IoT, and Enabling Technologies (ICIoT) (pp. 29-34). IEEE. [DOI:10.1109/ICIoT48696.2020.9089489]
32. [32] Hui, X., Bai, J., Wang, H., & Zhang, Y. (2020). Fast pressure distribution prediction of airfoils using deep learning. Aerospace Science and Technology, 105, 105949. [DOI:10.1016/j.ast.2020.105949]
33. [33] Guo, X., Li, W., & Iorio, F. (2016, August). Convolutional neural networks for steady flow approximation. In Proceedings of the 22nd ACM SIGKDD international conference on knowledge discovery and data mining (pp. 481-490). [DOI:10.1145/2939672.2939738]
34. [34] Kang, Y., Chen, S., Wang, X., & Cao, Y. (2018). Deep convolutional identifier for dynamic modeling and adaptive control of unmanned helicopter. IEEE transactions on neural networks and learning systems, 30(2), 524-538. [DOI:10.1109/TNNLS.2018.2844173]
35. [35] Fliess, M. (2009). Model-free control and intelligent PID controllers: towards a possible trivialization of nonlinear control?. IFAC Proceedings Volumes, 42(10), 1531-1550. [DOI:10.3182/20090706-3-FR-2004.00256]
36. [36] Fliess, M., & Join, C. (2013). Model-free control. International Journal of Control, 86(12), 2228-2252. [DOI:10.1080/00207179.2013.810345]
37. [37] Al Younes, Y., Drak, A., Noura, H., Rabhi, A., & El Hajjaji, A. (2014, May). Model-free control of a quadrotor vehicle. In 2014 International conference on unmanned aircraft systems (ICUAS) (pp. 1126-1131). IEEE. [DOI:10.1109/ICUAS.2014.6842366]
38. [38] Wang, H., Ye, X., Tian, Y., Zheng, G., & Christov, N. (2016). Model-free-based terminal SMC of quadrotor attitude and position. IEEE Transactions on Aerospace and Electronic Systems, 52(5), 2519-2528. [DOI:10.1109/TAES.2016.150303]
39. [39] Younes, Y. A., Drak, A., Noura, H., Rabhi, A., & Hajjaji, A. E. (2016). Robust model-free control applied to a quadrotor UAV. Journal of Intelligent & Robotic Systems, 84, 37-52. [DOI:10.1007/s10846-016-0351-2]
40. [40] Zhao, S., Wang, X., Zhang, D., & Shen, L. (2017). Model-free fuzzy adaptive control of the heading angle of fixed-wing unmanned aerial vehicles. Journal of Aerospace Engineering, 30(4), 04017019. [DOI:10.1061/(ASCE)AS.1943-5525.0000730]
41. [41] Bekcheva, M., Join, C., & Mounier, H. (2018, June). Cascaded Model-Free Control for trajectory tracking of quadrotors. In 2018 international conference on unmanned aircraft systems (ICUAS) (pp. 1359-1368). IEEE. [DOI:10.1109/ICUAS.2018.8453339]
42. [42] Barth, J. M., Condomines, J. P., Bronz, M., Moschetta, J. M., Join, C., & Fliess, M. (2020). Model-free control algorithms for micro air vehicles with transitioning flight capabilities. International Journal of Micro Air Vehicles, 12, 1756829320914264. [DOI:10.1177/1756829320914264]
43. [43] Khosravi Samani M, Basohbat Novinzadeh A. A Multi-body Control Approach for Flapping Wing Micro Aerial Vehicles. JoC 2022; 16 (1) :73-87,URL: http://joc.kntu.ac.ir/article-1-763-fa.html [DOI:10.52547/joc.16.1.73]
44. [44] Glida, H. E., Abdou, L., Chelihi, A., Sentouh, C., & Perozzi, G. (2022). Optimal model-free fuzzy logic control for autonomous unmanned aerial vehicle. Proceedings of the Institution of Mechanical Engineers, Part G: Journal of Aerospace Engineering, 236(5), 952-967. [DOI:10.1177/09544100211025379]
45. [45] Hagan, M. T., Demuth, H. B., & Beale, M. (1997). Neural network design. PWS Publishing Co.
46. [46] Kingma, D. P., & Ba, J. (2014). Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980.
47. [47] Nobahari, H., Alizad, M., & Nasrollahi, S. (2021). A nonlinear model predictive controller based on the gravitational search algorithm. Optimal Control Applications and Methods, 42(6), 1734-1761. [DOI:10.1002/oca.2757]
48. [48] Zipfel, P. H. (2007). Modeling and simulation of aerospace vehicle dynamics. Aiaa. [DOI:10.2514/4.862182]

Add your comments about this article : Your username or Email:
CAPTCHA

Send email to the article author


Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

© 2024 CC BY-NC 4.0 | Journal of Control

Designed & Developed by : Yektaweb