Volume 18, Issue 4 (Journal of Control, V.18, N.4 Winter 2025)                   JoC 2025, 18(4): 1-13 | Back to browse issues page

XML Persian Abstract Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Haghighi Tajvar P, Dehghan Banadaki S M M, Rajabi M J. Optimization based In-Motion Alignment for SINS using Velocity/Position Integration. JoC 2025; 18 (4) :1-13
URL: http://joc.kntu.ac.ir/article-1-1016-en.html
1- K. N. Toosi University of Technology, Tehran, Iran
2- Malek Ashtar University of Technology
Abstract:   (4076 Views)
This paper is concerned with the in-motion alignment for low-cost strap-down inertial navigation system (SINS) using an optimization method. The proposed method utilizes GPS position/velocity, along with the outputs from inertial sensors to generate the observation vectors. By introducing a two-sample approximation approach, a recursive velocity/position optimization algorithm is developed by discretizing the integral terms of the observation vectors to estimate the initial attitude matrix. Compared with the traditional velocity integration formulae for constructing the vector observations, the proposed method maintains approximately the same convergence speed while exhibiting more robustness against bias and measurement noise present in the inertial sensors outputs due to the use of position observations. The proposed algorithm provides accurate estimates in applications involving rapid changes in the angular velocities measured by gyroscopes and the forces measured by accelerometers. Simulation results in various scenarios indicate that after 100s, the root mean square of estimation error for the low-cost ADIS16488 INS is less than 0.6°  for yaw angle, less than 0.1°  for pitch angle, and less than 0.3°  for roll angle. This accuracy in the initial Euler angle estimates is sufficient for the coarse in-motion alignment. 
Full-Text [PDF 1531 kb]   (52 Downloads)    
Type of Article: Research paper | Subject: Special
Received: 2024/07/17 | Accepted: 2024/12/28 | ePublished ahead of print: 2025/01/2 | Published: 2025/03/10

References
1. [1] قسمتی، حیرانی نوبری، عاروان، کاشانی نیا، 1399. تحلیل خطای انحراف ژیروسکوپ در الگوریتم ناوبری مستقل از موقعیت سامانه‌ی اینرسی صفحه پایدار. مجله کنترل، جلد 14، شماره 2، صفحه 15-1.‎
2. [2] Savage, P.G., 2008. Computational elements for strapdown systems. Low Cost Navigation Sensors and Integration Technology, pp.3-3.
3. [3] Lu, Z., Li, J., Zhang, X., Feng, K., Wei, X., Zhang, D., Mi, J. and Liu, Y., 2020. A new in-flight alignment method with an application to the low-cost SINS/GPS integrated navigation system. Sensors, 20(2), p.512. [DOI:10.3390/s20020512]
4. [4] Xu, X., Sun, Y., Yao, Y. and Zhang, T., 2021. A robust in-motion optimization-based alignment for SINS/GPS integration. IEEE Transactions on Intelligent Transportation Systems, 23(5), pp.4362-4372. [DOI:10.1109/TITS.2020.3044084]
5. [5] Ouyang, W. and Wu, Y., 2022. Optimization-based strapdown attitude alignment for high-accuracy systems: Covariance analysis with applications. IEEE Transactions on Aerospace and Electronic systems, 58(5), pp.4053-4069. [DOI:10.1109/TAES.2022.3157570]
6. [6] قهرمانی, ماجدالحسن، 1401. طراحی الگوریتمی برای افزایش همگرایی فیلتر کالمن توسعه‌یافته مبنی بر مدل پیش‌بین تفاضلی در ترازیابی سامانه ناوبری اینرسی و تحلیل پایداری آن. مجله کنترل، جلد 16، شماره 1، صفحه 36-27.‎
7. [7] Chang, L., Qin, F. and Jiang, S., 2019. Strap-down inertial navigation system initial alignment based on modified process model. IEEE Sensors Journal, 19(15), pp.6381-6391. [DOI:10.1109/JSEN.2019.2910213]
8. [8] Lu, J., Xie, L. and Li, B., 2015. Analytic coarse transfer alignment based on inertial measurement vector matching and real-time precision evaluation. IEEE Transactions on Instrumentation and Measurement, 65(2), pp.355-364. [DOI:10.1109/TIM.2015.2502879]
9. [9] Chattaraj, S., Mukherjee, A. and Chaudhuri, S.K., 2013. Transfer alignment problem: Algorithms and design issues. Gyroscopy and navigation, 4(3), pp.130-146. [DOI:10.1134/S2075108713030036]
10. [10] Zhao, H., Shang, H., Wang, Z. and Jiang, M., 2011, June. Comparison of initial alignment methods for SINS. In 2011 9th World Congress on Intelligent Control and Automation (pp. 42-47). IEEE. [DOI:10.1109/WCICA.2011.5970584]
11. [11] Li, W., Tang, K., Lu, L. and Wu, Y., 2013. Optimization-based INS in-motion alignment approach for underwater vehicles. Optik, 124(20), pp.4581-4585. [DOI:10.1016/j.ijleo.2013.01.069]
12. [12] Jin, K., Chai, H., Su, C., Xiang, M. and Hui, J., 2022. An optimization-based in-motion fine alignment and positioning algorithm for underwater vehicles. Measurement, 202, p.111746. [DOI:10.1016/j.measurement.2022.111746]
13. [13] Chang, L., Qin, F. and Jiang, S., 2019. Strap-down inertial navigation system initial alignment based on modified process model. IEEE Sensors Journal, 19(15), pp.6381-6391. [DOI:10.1109/JSEN.2019.2910213]
14. [14] Chang, L., Li, J. and Li, K., 2016. Optimization-based alignment for strap-down inertial navigation system: Comparison and extension. IEEE Transactions on Aerospace and Electronic Systems, 52(4), pp.1697-1713. [DOI:10.1109/TAES.2016.130824]
15. [15] Wu, M., Wu, Y., Hu, X. and Hu, D., 2011. Optimization-based alignment for inertial navigation systems: Theory and algorithm. Aerospace science and technology, 15(1), pp.1-17. [DOI:10.1016/j.ast.2010.05.004]
16. [16] Wahba, G., 1965. A least squares estimate of satellite attitude. SIAM review, 7(3), pp.409-409. [DOI:10.1137/1007077]
17. [17] Titterton, D. and Weston, J.L., 2004. Strap-down inertial navigation technology (Vol. 17). IET. [DOI:10.1049/PBRA017E]
18. [18] Huang, Y., Zhang, Y. and Chang, L., 2018. A new fast in-motion coarse alignment method for GPS-aided low-cost SINS. IEEE/ASME Transactions on Mechatronics, 23(3), pp.1303-1313. [DOI:10.1109/TMECH.2018.2835486]
19. [19] Chang, L., Zha, F. and Qin, F., 2017. Indirect Kalman filtering based attitude estimation for low-cost attitude and heading reference systems. IEEE/ASME Transactions On Mechatronics, 22(4), pp.1850-1858. [DOI:10.1109/TMECH.2017.2698639]

Add your comments about this article : Your username or Email:
CAPTCHA

Send email to the article author


Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

© 2025 CC BY-NC 4.0 | Journal of Control

Designed & Developed by : Yektaweb