1. [1] قسمتی، حیرانی نوبری، عاروان، کاشانی نیا، 1399. تحلیل خطای انحراف ژیروسکوپ در الگوریتم ناوبری مستقل از موقعیت سامانهی اینرسی صفحه پایدار. مجله کنترل، جلد 14، شماره 2، صفحه 15-1.
2. [2] Savage, P.G., 2008. Computational elements for strapdown systems. Low Cost Navigation Sensors and Integration Technology, pp.3-3.
3. [3] Lu, Z., Li, J., Zhang, X., Feng, K., Wei, X., Zhang, D., Mi, J. and Liu, Y., 2020. A new in-flight alignment method with an application to the low-cost SINS/GPS integrated navigation system. Sensors, 20(2), p.512. [
DOI:10.3390/s20020512]
4. [4] Xu, X., Sun, Y., Yao, Y. and Zhang, T., 2021. A robust in-motion optimization-based alignment for SINS/GPS integration. IEEE Transactions on Intelligent Transportation Systems, 23(5), pp.4362-4372. [
DOI:10.1109/TITS.2020.3044084]
5. [5] Ouyang, W. and Wu, Y., 2022. Optimization-based strapdown attitude alignment for high-accuracy systems: Covariance analysis with applications. IEEE Transactions on Aerospace and Electronic systems, 58(5), pp.4053-4069. [
DOI:10.1109/TAES.2022.3157570]
6. [6] قهرمانی, ماجدالحسن، 1401. طراحی الگوریتمی برای افزایش همگرایی فیلتر کالمن توسعهیافته مبنی بر مدل پیشبین تفاضلی در ترازیابی سامانه ناوبری اینرسی و تحلیل پایداری آن. مجله کنترل، جلد 16، شماره 1، صفحه 36-27.
7. [7] Chang, L., Qin, F. and Jiang, S., 2019. Strap-down inertial navigation system initial alignment based on modified process model. IEEE Sensors Journal, 19(15), pp.6381-6391. [
DOI:10.1109/JSEN.2019.2910213]
8. [8] Lu, J., Xie, L. and Li, B., 2015. Analytic coarse transfer alignment based on inertial measurement vector matching and real-time precision evaluation. IEEE Transactions on Instrumentation and Measurement, 65(2), pp.355-364. [
DOI:10.1109/TIM.2015.2502879]
9. [9] Chattaraj, S., Mukherjee, A. and Chaudhuri, S.K., 2013. Transfer alignment problem: Algorithms and design issues. Gyroscopy and navigation, 4(3), pp.130-146. [
DOI:10.1134/S2075108713030036]
10. [10] Zhao, H., Shang, H., Wang, Z. and Jiang, M., 2011, June. Comparison of initial alignment methods for SINS. In 2011 9th World Congress on Intelligent Control and Automation (pp. 42-47). IEEE. [
DOI:10.1109/WCICA.2011.5970584]
11. [11] Li, W., Tang, K., Lu, L. and Wu, Y., 2013. Optimization-based INS in-motion alignment approach for underwater vehicles. Optik, 124(20), pp.4581-4585. [
DOI:10.1016/j.ijleo.2013.01.069]
12. [12] Jin, K., Chai, H., Su, C., Xiang, M. and Hui, J., 2022. An optimization-based in-motion fine alignment and positioning algorithm for underwater vehicles. Measurement, 202, p.111746. [
DOI:10.1016/j.measurement.2022.111746]
13. [13] Chang, L., Qin, F. and Jiang, S., 2019. Strap-down inertial navigation system initial alignment based on modified process model. IEEE Sensors Journal, 19(15), pp.6381-6391. [
DOI:10.1109/JSEN.2019.2910213]
14. [14] Chang, L., Li, J. and Li, K., 2016. Optimization-based alignment for strap-down inertial navigation system: Comparison and extension. IEEE Transactions on Aerospace and Electronic Systems, 52(4), pp.1697-1713. [
DOI:10.1109/TAES.2016.130824]
15. [15] Wu, M., Wu, Y., Hu, X. and Hu, D., 2011. Optimization-based alignment for inertial navigation systems: Theory and algorithm. Aerospace science and technology, 15(1), pp.1-17. [
DOI:10.1016/j.ast.2010.05.004]
16. [16] Wahba, G., 1965. A least squares estimate of satellite attitude. SIAM review, 7(3), pp.409-409. [
DOI:10.1137/1007077]
17. [17] Titterton, D. and Weston, J.L., 2004. Strap-down inertial navigation technology (Vol. 17). IET. [
DOI:10.1049/PBRA017E]
18. [18] Huang, Y., Zhang, Y. and Chang, L., 2018. A new fast in-motion coarse alignment method for GPS-aided low-cost SINS. IEEE/ASME Transactions on Mechatronics, 23(3), pp.1303-1313. [
DOI:10.1109/TMECH.2018.2835486]
19. [19] Chang, L., Zha, F. and Qin, F., 2017. Indirect Kalman filtering based attitude estimation for low-cost attitude and heading reference systems. IEEE/ASME Transactions On Mechatronics, 22(4), pp.1850-1858. [
DOI:10.1109/TMECH.2017.2698639]