Volume 18, Issue 4 (Journal of Control, V.18, N.4 Winter 2025)                   JoC 2025, 18(4): 57-65 | Back to browse issues page

XML Persian Abstract Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Esmaili F. Enlargement of the Domain of Attraction of Polynomial Systems via Observer-Based Controller Design and Transformation into an SOS Programming Problem. JoC 2025; 18 (4) :57-65
URL: http://joc.kntu.ac.ir/article-1-1024-en.html
Department of Electrical Engineering, Birjand Branch, Islamic Azad University, Birjand, Iran
Abstract:   (120 Views)
Estimating and expanding the domain of attraction for nonlinear systems is a challenging topic in the field of control. This paper addresses the development of the attraction domain for polynomial systems, a prevalent class of nonlinear systems. By designing a state feedback controller and an observer, the closed-loop stability of the system is achieved around the origin (system equilibrium point) in the presence of input saturation. To reach a broader attraction domain around the equilibrium point, the design problem is converted into a bilinear SOS optimization problem. Numerical examples demonstrate the performance of the designed observer-based controller in expanding the attraction domain, showing improvements over using output feedback and, in some cases, even compared to state feedback controllers
Full-Text [PDF 1022 kb]   (19 Downloads)    
Type of Article: Research paper | Subject: Special
Received: 2024/08/14 | Accepted: 2025/01/5 | ePublished ahead of print: 2025/01/19 | Published: 2025/03/20

References
1. [1] V. I. Zubov, "Methods of AM Lyapunov and their application," (No Title), 1964.
2. [2] W. F. Guerrero-Sanchez, J. Guerrero-Castellanos, and V. V. Alexandrov, "A computational method for the determination of attraction regions," in 2009 6th International Conference on Electrical Engineering, Computing Science and Automatic Control (CCE), 2009: IEEE, pp. 1-7. [DOI:10.1109/ICEEE.2009.5393394]
3. [3] O. Hachicho, "A novel LMI-based optimization algorithm for the guaranteed estimation of the domain of attraction using rational Lyapunov functions," Journal of the Franklin Institute, vol. 344, no. 5, pp. 535-552, 2007. [DOI:10.1016/j.jfranklin.2006.02.032]
4. [4] F. Hamidi, H. Jerbi, W. Aggoune, M. Djemai, and M. N. Abdelkrim, "Enlarging the domain of attraction in nonlinear polynomial systems," International Journal of Computers Communications & Control, vol. 8, no. 4, pp. 538-547, 2013. [DOI:10.15837/ijccc.2013.4.152]
5. [5] A. Vannelli and M. Vidyasagar, "Maximal Lyapunov functions and domains of attraction for autonomous nonlinear systems," Automatica, vol. 21, no. 1, pp. 69-80, 1985. [DOI:10.1016/0005-1098(85)90099-8]
6. [6] A. Iannelli, A. Marcos, and M. Lowenberg, "Estimating the region of attraction of uncertain systems with invariant sets," IFAC-PapersOnLine, vol. 51, no. 25, pp. 246-251, 2018. [DOI:10.1016/j.ifacol.2018.11.113]
7. [7] T.C. Wang, S. Lall, and M. West, "Polynomial level-set method for polynomial system reachable set estimation," IEEE Transactions on Automatic Control, vol. 58, no. 10, pp. 2508-2521, 2013. [DOI:10.1109/TAC.2013.2263916]
8. [8] G. Valmorbida and J. Anderson, "Region of attraction analysis via invariant sets," in 2014 American control conference, 2014: IEEE, pp. 3591-3596. [DOI:10.1109/ACC.2014.6859263]
9. [9] G. Valmorbida and J. Anderson, "Region of attraction estimation using invariant sets and rational Lyapunov functions," Automatica, vol. 75, pp. 37-45, 2017. [DOI:10.1016/j.automatica.2016.09.003]
10. [10] A. Iannelli, A. Marcos, and M. Lowenberg, "Robust estimations of the region of attraction using invariant sets," Journal of the Franklin Institute, vol. 356, no. 8, pp. 4622-4647, 2019. [DOI:10.1016/j.jfranklin.2019.02.013]
11. [11] A. Levin, "An analytical method of estimating the domain of attraction for polynomial differential equations," IEEE Transactions on Automatic Control, vol. 39, no. 12, pp. 2471-2475, 1994. [DOI:10.1109/9.362845]
12. [12] J. Awrejcewicz, D. Bilichenko, A. K. Cheib, N. Losyeva, and V. Puzyrov, "Estimating the region of attraction based on a polynomial Lyapunov function," Applied Mathematical Modelling, vol. 90, pp. 1143-1152, 2021. [DOI:10.1016/j.apm.2020.10.010]
13. [13] D. Li, D. Ignatyev, A. Tsourdos, and Z. Wang, "Estimation of non-symmetric and unbounded region of attraction using shifted shape function and R-composition," ISA transactions, vol. 136, pp. 308-322, 2023. [DOI:10.1016/j.isatra.2022.11.015]
14. [14] L. Khodadadi, B. Samadi, and H. Khaloozadeh, "Estimation of region of attraction for polynomial nonlinear systems: A numerical method," ISA transactions, vol. 53, no. 1, pp. 25-32, 2014. [DOI:10.1016/j.isatra.2013.08.005]
15. [15] S. Wang, Z. She, and S. S. Ge, "Inner-estimating domains of attraction for nonpolynomial systems with polynomial differential inclusions," IEEE transactions on cybernetics, vol. 52, no. 3, pp. 1628-1641, 2020. [DOI:10.1109/TCYB.2020.2987326]
16. [16] P. Polcz and G. Szederkényi, "Lyapunov function computation for autonomous systems with complex dynamic behavior," European Journal of Control, vol. 65, p. 100619, 2022. [DOI:10.1016/j.ejcon.2022.100619]
17. [17] M. Yadipour, F. Hashemzadeh, and M. Baradarannia, "Controller design to enlarge the domain of attraction for a class of nonlinear systems," in 2017 International Conference on Research and Education in Mechatronics (REM), 2017: IEEE, pp. 1-5. [DOI:10.1109/REM.2017.8075242]
18. [18] D. Henrion and M. Korda, "Convex computation of the region of attraction of polynomial control systems," IEEE Transactions on Automatic Control, vol. 59, no. 2, pp. 297-312, 2013. [DOI:10.1109/TAC.2013.2283095]
19. [19] G. Valmorbida, S. Tarbouriech, and G. Garcia, "Design of polynomial control laws for polynomial systems subject to actuator saturation," IEEE Transactions on Automatic Control, vol. 58, no. 7, pp. 1758-1770, 2013. [DOI:10.1109/TAC.2013.2248256]
20. [20] M. Barkhordari, M. R. J. Motlagh, and M. Keshavarz, "Enlarging region of attraction in input-output linearization method," in 2008 10th International Conference on Control, Automation, Robotics and Vision, 2008: IEEE, pp. 2244-2249. [DOI:10.1109/ICARCV.2008.4795881]
21. [21] S. Haghighatnia and R. K. Moghaddam, "Enlarging the guaranteed region of attraction in nonlinear systems with bounded parametric uncertainty," Journal of Zhejiang University SCIENCE C, vol. 14, pp. 214-221, 2013. [DOI:10.1631/jzus.C1200213]
22. [22] J. Alizadeh and H. Khaloozadeh, "Enlarging the region of attraction for nonlinear systems through the sum-of-squares programming," Control and Optimization in Applied Mathematics, vol. 4, no. 2, pp. 19-37, 2019.
23. [23] D. Chowdhury, N. Kant, R. Mukherjee, and H. K. Khalil, "Enlarging the region of attraction of equilibria of underactuated systems using sum of squares and impulse manifold method," in 2017 American Control Conference (ACC), 2017: IEEE, pp. 893-898. [DOI:10.23919/ACC.2017.7963066]
24. [24] A. Shirin, M. Martínez-Ramón, and R. Fierro, "Kernel Machine to Estimate a Lyapunov Function and Region of Attraction (ROA) for Nonlinear Systems," IEEE Access, 2023. [DOI:10.1109/ACCESS.2023.3286345]
25. [25] G. Chesi, "Computing output feedback controllers to enlarge the domain of attraction in polynomial systems," IEEE Transactions on Automatic Control, vol. 49, no. 10, pp. 1846-1853, 2004. [DOI:10.1109/TAC.2004.835589]
26. [26] E. Ahbe, P. Listov, A. Iannelli, and R. S. Smith, "Feedback control design maximizing the region of attraction of stochastic systems using Polynomial Chaos Expansion," IFAC-PapersOnLine, vol. 53, no. 2, pp. 7197-7203, 2020. [DOI:10.1016/j.ifacol.2020.12.550]
27. [27] D. Xu, X. Wang, Y. Hong, Z.-P. Jiang, and S. Xu, "Output feedback stabilization and estimation of the region of attraction for nonlinear systems: A vector control Lyapunov function perspective," IEEE Transactions on Automatic Control, vol. 61, no. 12, pp. 4034-4040, 2016. [DOI:10.1109/TAC.2016.2543198]
28. [28] M. Shahbazzadeh, H. Salehifar, and S. Jalil Sadati, "Observer‐based control with enlarged domain of attraction for one‐sided Lipschitz systems subject to input saturation," Optimal Control Applications and Methods, vol. 43, no. 2, pp. 495-511, 2022. [DOI:10.1002/oca.2827]
29. [29] S. Jiang, B. Natura, and O. Weinstein, "A faster interior-point method for sum-of-squares optimization," Algorithmica, pp. 1-42, 2023. [DOI:10.1007/s00453-023-01112-4]
30. [30] L. Kapelevich, C. Coey, and J. P. Vielma, "Sum of squares generalizations for conic sets," Mathematical Programming, vol. 199, no. 1-2, pp. 1417-1429, 2023. [DOI:10.1007/s10107-022-01831-6]
31. [31] G. Chesi, "Rational Lyapunov functions for estimating and controlling the robust domain of attraction," Automatica, vol. 49, no. 4, pp. 1051-1057, 2013. [DOI:10.1016/j.automatica.2013.01.032]
32. [32] W. Tan and A. Packard, "Stability region analysis using polynomial and composite polynomial Lyapunov functions and sum-of-squares programming," IEEE Transactions on Automatic Control, vol. 53, no. 2, pp. 565-571, 2008. [DOI:10.1109/TAC.2007.914221]
33. [33] G. Chesi, A. Garulli, A. Tesi, and A. Vicino, "Solving quadratic distance problems: an LMI-based approach," IEEE Transactions on Automatic Control, vol. 48, no. 2, pp. 200-212, 2003. [DOI:10.1109/TAC.2002.808465]
34. [34] U. Topcu and A. Packard, "Local stability analysis for uncertain nonlinear systems," IEEE Transactions on Automatic Control, vol. 54, no. 5, pp. 1042-1047, 2009. [DOI:10.1109/TAC.2009.2017157]
35. [35] J. Lofberg, "YALMIP: A toolbox for modeling and optimization in MATLAB," in 2004 IEEE international conference on robotics and automation (IEEE Cat. No. 04CH37508), 2004: IEEE, pp. 284-289. [DOI:10.1109/CACSD.2004.1393890]
36. [36] S. Prajna, A. Papachristodoulou, and P. A. Parrilo, "Introducing SOSTOOLS: A general purpose sum of squares programming solver," in Proceedings of the 41st IEEE Conference on Decision and Control, 2002., 2002, vol. 1: IEEE, pp. 741-746. [DOI:10.1109/CDC.2002.1184594]
37. [37] J. F. Sturm, "Using SeDuMi 1.02, a MATLAB toolbox for optimization over symmetric cones," Optimization methods and software, vol. 11, no. 1-4, pp. 625-653, 1999. [DOI:10.1080/10556789908805766]

Add your comments about this article : Your username or Email:
CAPTCHA

Send email to the article author


Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

© 2025 CC BY-NC 4.0 | Journal of Control

Designed & Developed by : Yektaweb