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Abstract-The application of Abstract Meaning
Representation (AMR) is widely increasing as a principal
form of structured sentence semantics, and it is considered as
a turning point for Natural Language Processing (NLP)
research. AMRs are rooted and labeled graphs, which
capture semantics on sentence level and abstract away from
Morpho-Syntactic properties. The nodes of the graph
represent meaning concepts, and the edge labels show
relationships between them. In this paper, we give a brief
review about the existing approaches of generating text from
AMR and parsing input text to produce AMR by studying
various research from 2013 to 2022. Besides, we explain how
the researchers have been used AMR for prevalent NLP
tasks. Afterwards, we describe the existing datasets and
evaluation metrics, which can be used in this regard. Finally,
we discuss some basic features and challenges of AMR.
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. INTRODUCTION

Every human can answer the below question easily, in a
given context, but it is very complicated for machines
to analyze this question in natural language:
Who did what to whom?

Determining the true meaning of human natural
language by machine has always been one of the main
goals of Natural Language Processing researchers. Using
Machine Learning (ML) methods for training the data,
which are the common approach in this field, the
challenge has changed to have a meaningful
representation that is computationally friendly and can be

used to annotate a large amount of data in multiple
natural languages, consistently.

It is about two decades or more, that NLP analysis
relied completely on syntactic Treebanks Corpora to
make machines to get the meaning of human natural
languages. When Penn Treebank project [1] released the
first large-scale Treebank, even more syntactic
Treebanks have been proposed for a wide range of
languages. Then, they have been used to build principal
NLP systems, such as Part-Of-Speech (POS) taggers,
Question Answering (QA), Machine Translation (MT)
and Text Summarization (TS) systems [2-4].

By passing from the syntactic structure analysis to
semantics, scientists found that statistical parsers are not
well suited for meaning representation production. In
semantic analysis, complicated structures, which are very
difficult to capture by parse tree structures and their
limitations have often been encountered. For instance, in
semantic network structure, nodes are often equivalent to
the argument of more than one predicate. So, it can be
useful for finding semantically less important words,
hence, leaving nodes that do not add any further meaning
to the final result, unattached. To solve the problems
posed by this limitation and do a direct semantic analysis
of all sentences, recent research have shifted to parsing
with graph-structured representations. Because, syntactic
Treebanks had been vital for enhancing the performance
of syntactic parsers, emerge techniques with semantic
parsing using Sembanks, which are sets of English
sentences paired with their related semantic
representations [5].
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For example, the semantic structure of the sentence
The dog treed the cat is considerably complicated, and
translating it to other natural languages may not be easy.
Because the verb treed is an example of skewing between
semantics and grammar. Tree is applied as a verb in this
sentence and the event has happened caused to go up. In
other words, the sentence means the dog chased the cat,
thus, the cat went up into a tree or the dog caused the cat
to go up into a tree [6].

Usually, semantic parsing involves domain
dependence. Some application domains are: The Air
Travel Information Service (ATIS), the Robocup Coach
Language (Clang), and Database Query Application
(GeoQuery). Although, we need definitely large semantic
banks for broad coverage in NLP, various related projects
have been launched like the Groningen Meaning Bank
(GMB) [7], the Semantic Treebank (ST) [8], UCCA [9],
the Prague Dependency Bank [10] and UNL [11].

Afterwards, Banarescu et al. [12] tried to annotate the
logical meaning of sentences in Abstract Meaning
Representation (AMR), which constituted semantic
roles, questions, co-reference, modality, negation, and
linguistic phenomena. Therefore, by producing a notable
corpus and a correctable logical semantic input format,
the AMR creators hope to be able to encourage important
advances in Statistical Machine Translation (SMT),
Natural Language Generation (NLG), and Statistical
Natural Language Understanding (SNLU).

The existence of AMR parsers and their quality
performance has encouraged many researchers to work
on integrating the whole sentence meaning into NLP
applications. In this regard, Tohidi and Dadkhah [13]
provided a short review of AMR applications in
downstream tasks. To the best of our knowledge, the
distribution of the different applications of AMR in
various NLP tasks is as follows: 31% for Machine
Comprehension, 18% for each Text Summarization and
Question Answering, 13% for Entity Linking and Linked
Data, 9% for each Machine Translation and Information
Retrieval and 2% for other NLP tasks.

In this paper, we investigated AMR model and
reviewed the existing methods for parsing natural
language to AMR and generating it from AMR. In this
paper we categorized Parsing methods into five
categories: 1) Grammar-based, 2) Graph-based, 3)
Transition-based, 4) Sequence-to-sequence-based and 5)
Conversion-based and Generating methods into six
categories: 1) Tree-transducer-based, 2) Graph-
grammar-based, 3) Graph-based, 4) Sequence-to-
sequence-based, 5) Rule-based and 6) Transition-based.
Besides we discussed evaluation metrics and the datasets
used in related works and the main applications of AMR.
In addition, we explained some common challenges of
working with AMR structure.

We noticed that the distribution of the different
languages that have been used in previous AMR related
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works is as follows: 82% for English, 7% for Chinese,
2% for each Japanese and Czech languages, 1% for each
Persian, German, Spanish, Portuguese, French, Korean,
etc. based on the research. As expected, most of the
research have been done on English language, and more
effort needed for other languages. One of the reasons for
less research in non-English languages could be its
structure. AMR designed specifically for English, and it
may not be easy to use the whole format in some
languages.

The rest of this paper structured as follows: Section 2
investigates AMR briefly. Section 3 gives an overview of
AMR parsing and its related works. Section 4 studies
generation text from AMR and its related works. Section
5 discusses common evaluation methods in this area,
some of the AMR challenges, and the basic features
about AMRs. Finally, Section 6 provides the conclusion.

Il. ABSTRACT MEANING REPRESENTATION

In this section the basic and the improved form of
AMR are explained respectively.

A. Basic AMR

There are two types of meaning representations:
symbolic representations and distributed representations.
AMR is an example of the first one and represents the
semantic of an English utterance as a set of relations
between predicates and entities, which packaged in a
graph-based structure. In the graph, nodes are equivalent
to variables that represent individuals, entities and
predicates of the utterance. AMR uses a neo-Davidsonian
view of predicate meanings and treats predicates as
atomic individuals.

First, it would be helpful to look at some examples of
AMR to get more familiar with its structure. Fig. 1
represents AMRs in the form of trees for the following
two sentences:

1) The children moaned.
2) Ribble handed out envelopes to the children.

(e / give-01
(e / moan-01 :ARGO (x / person: named “Ribble”)
:ARGO (x / child)) :ARGL1 (y / envelope)

:ARG2 (z / child))

Figure 1. The AMRs for the two mentioned sentences [14].

Every AMR has a root that is unique and is displayed
as the first node within the related tree. Here, we can see
variables: e, x, etc., concepts such as moan-01 and child,
constants like Ribble, and roles such as ARGO, etc. Also
the slash here indicates an instance, for example: x/child
means that x is an instance of the concept child.
Furthermore, the colon symbol is a punctuation symbol
to represent roles, and parentheses show which role is
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related to which concept. In the structure, line breaks are
optional. Additionally, AMRs can have a linear format.
As an example, considering the sentence A boy read a
booklet, the linear format is as follows:

(efread-01: ARGO (x/boy): ARG (y/booklet))

A notable feature of AMRs is the role inversion
ability. This feature swaps the arguments of a selected
relation, for example: R (x;, x,) = R-of (x,, x;). By role
inversion (R-of), AMRs with the same meaning will be
created, however their structure is not equivalent. As Fig.
2 indicates, the role inversion can be applied for the
above example, as its AMR has two arguments and role
inversion can be applied on any of them.

(x/ boy
:ARGO-of (e / read-01
:ARGL1 (y / booklet)))

(y / booklet
:ARG1-of (e / read-01
:ARGO (x / boy)))

Figure 2. Role inversion feature of AMR.

The left AMR in Fig. 2 places the focus on the word
boy. In the right AMR, the focus is on the booklet, which
paraphrases the sentence as a booklet that was read by a
boy. This remarkable feature also has its limitations: it is
not possible to focus on both boy and booklet, since it will
be an AMR graph with two roots.

AMRs commonly considered as tree structures;
however, they can be seen as directed acyclic graphs with
a single root too, that vertices are variables and edges
denote roles and instances. As a result, AMRs can be
converted into sets of triples [15]. The tree structure is
more useful for semantic interpretation since we must be
able to determine the scope for operators like negation.

It is very simple to provide a semantic and theoretical

interpretation. AMR can be made just by converting roles
into two-place predicates, concepts, and events into one-
place predicates, and by quantifying the existence of all
variables introduced by events and concepts.
Furthermore, it is noteworthy that this kind of
representation does not allow us to include scope-based
operators  systematically, such as quantification,
negation, and projection.
Moreover, a formal definition of AMRs syntax can be
provided and a recursive translation function from AMR
to FOL (First Order Logic) can be produced. The
function, that has many similarities with the conversion
from AMR to A-calculus. The following notational
definitions (simple AMRs syntax and semantics) are used
in this regard [14, 16].

Definition 1 states that constants and instance
assignments that decorated with outgoing roles are all
AMRs. It may be a bit counterintuitive; since different
types of semantic objects place in one equation.

Definition 1: A ::=c | (x/P)| x/P: R{A; ...: R,A,

! Discourse Representation Theory
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Where A; represents i AMR, x and c represent
variables and constants, respectively. Also, R; and P are
equivalent to i roles and properties, respectively.

The following translation function, Definition 2,
would clarify the issue as it can translate all AMR
structures into a kind of proposition. The most suitable
method to understand is by interpreting an AMR ¢ and
AMR (x/P) as: there exists an entity denoted by the
constant ¢ and an x with property P, respectively.

Definition 2: || c. ¢ II= ¢(c)

Il (x/P).¢ I=3x(P(x) A ¢p(x))

Il (x/P:RyA; ...: RyA). ¢ |l
=3Jx(P(x) A
Il Ay. Ay - Ry (x.y)
A (x))

A h-expression ¢ is a function, or subroutine without
a name, which could be applied to FOL terms as
arguments in order to yield new FOL expressions where
the variables are bounded to the argument terms [17]. To
cope with the right scope assignment, the roles
translation delayed by transforming them into A-
expressions abstracting over role players. For example,
the expression Zy. R(x,y) is gotten, if the pre-translated x
is linked to the not-translated AMR A (in Definition 1)
via a role R. It results in a recursive function of
translation, which maps a AMR paired with a A-
expression (for roles) to a FOL formula.

In translating process, when the target concept is
related to the other ones, it is not clear that what semantic
material they would introduce, and the roles should be
attached to which edges. To deal with this, with the help
of A-bound formulas (that represent roles), the translation
function postpones the decision. However, for starting
the translation of a new AMR, we should start with the
first node, which is the root. This node does not link to
other concepts through outgoing roles, so it is necessary
to give it a dummy tautology formula: Ax.

Fig. 3 represents a sample derivation for the sentence
the teacher shouted.

|[(e / shout-01 :ARGO (x / teacher)), Au.T|| = [2.c]
Je(shout-01(e)A[|(x/teacher), Ay.ARGO(e,y)||[AAu.T(e)) = [2.b]
Je(shout-01(e)A Ix(teacher(x)A Ay.ARGO(e,y)(x))AAu.T(e)) = [B-conv]
Je(shout-01(e)Adx(teacher(x)A ARGO(e,x))AT) = [T-elim]

Je(shout-01(e)A3x(teacher(x)A ARGO(e,x)))

Figure 3. A sample derivation for an example sentence [14].

The produced structure is a closed formula, which
means that all its variables are bounded because the
translation certifies that no free occurrences of variables
can be revealed. In addition, simple AMRs that are very
similar to the controlled DRT' fragment are presented,
interestingly [18]. Simple AMRs are in the two-variable
fragment of FOL. It should be noted that FOL is not
decidable. In contrast, the two-variable fragment is a
decidable FOL, in which formulas have a maximum of
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two variables with different names; however, it does not
have function symbols, yet probably have equality. In
addition, it has the property of a finite model, that is, if a
fragment formula can be satisfied, it can also be satisfied
in a finite model.

Fig. 4 illustrates an example of AMR annotation of
the sentence the police want to arrest Micheal Karras
from real data. Usually, nodes recognized with their
variable. For instance, w labeled with the concept want-
01. Moreover, the labeled edges connecting nodes are
relations, such as ARGO. Moreover, nodes that do not
have variables are constants, such as Michael. They
usually used to represent name, negation, or number.

The mentioned figure shown that usually AMR
concepts can be related with a single word in the sentence
that constitutes a one-to-one mapping. However,
sometimes there are concepts, which cannot easily be
associated with any specific word in the sentence. These
concepts usually indicate inferred knowledge, which
invoked by certain phrases or implicit relationships
between disparate clauses. This type of concepts called
Abstract Concepts. For instance, the concept person in
Fig. 4 is an inferred named entity type for Michael
Karras.

Banarescu et al. in [12] claimed that AMR cannot be
considered as an Interlingua, the characteristic that it
abstracts away from surface Morpho-syntactic
differences, makes it very attractive to implement cross-
lingual AMR banks based on resembling principles.

ARGD %
ARGO a / amest-01 (w / want-01
(" p/ police i ey

S ARG ARGL (a / arrest-01
@ :ARGO p
:ARGL (pl / person
:name (n / name

opl " Michael"
op2 "Karras" }))

i
name

i and

P

Figure 4. AMR graph and the related PENMAN notation [19].

Furthermore, Li et al. [20] shown that it is completely
possible to align English-Chinese AMRs. According to
this study of 100 English-Chinese sentences, which have
been annotated manually with AMR pairs, the authors
displayed that AMR formalism can be feasibly applied
for other languages than English.

Recently, Wein and Schneider in [21] proposed an
annotation layout for structural divergences classification
in cross-lingual meaning representations. They also
produced 50 related Spanish- English annotated
examples. They presented that structural divergence in
cross-lingual meaning representations pairs can
considered as a meaningful proxy of divergences
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between parallel texts. Hence, tools that depend on highly
literal translations, like pre-trained MT systems, can
efficiently exploit this structural divergence annotation
layout to cross-lingual AMR of the data. To be more
precise, they introduced a categorization to specify both
the type and the reason of the divergence as being due to
semantic, annotation or syntactic divergence.

B. Improved AMR

Some recent research tried to improve the basic
version of AMR and concentrated on AMR’s challenges
and shortcomings. In this regard, Pustejovsky et al. [22]
introduced an extension to AMRs that tackled the
semantic weaknesses of AMR while keeping its
cognitive plainness. In particular, they handled
quantification, negation, and modality phenomena that
had not been among AMR specifications previously.
Their proposed representation maintained the predicative
nature of AMR and embedded it under a scope graph
when itis needed. Plus, their proposed representation was
different from other treatments of modal and
quantification scope phenomena because it was more
transparent and defined default scope whenever feasible.
Fig. 5 illustrates the representation for a sentence
according to their proposed model and shows their
representation was suitable and efficient, because a
rooted graph structure could be kept with the scope
relation as the root node.

ARGO

(uant

Figure 5. Representation for the sentence A computer is on every desk
[22].

O’Gorman et al. [23] added a layer of annotation on
top of the AMR-2017 graph-bank (LDC2017T10) and
produced a corpus called Multi-Sentence AMR (MS-
AMR). The added layer represented co-reference and
implicit arguments beyond the sentence level. Fig. 6
illustrates an example in which each <identchain>
element assembles mentions of the same entity. Unlike
other co-reference annotation layouts, these mentions are
nodes in the AMR graphs (not pieces of text). Besides,
the annotation distinguishes what implicit roles of
predicate nodes the entity fills.

—<identchain relationid="rel-3">

<mention concept="he" id="DF-200-192400-625 7557.12" variable="h"/>

<mention concept="person" id="DF-200-192400-625 7557.11" variable="p"/>

<implicitrole argument="ARG0" id="DF-200-192400-625 7557.12
parentconcept="want-01" parentvariable="w2"/>

<fidentchain>

Figure 6. Co-reference chain example in MS-AMR corpus [24].
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Anikina et al. [24] assessed the performance of
various co-reference resolution implements on the MS-
AMR annotations. They worked on the token level by
mapping the co-reference annotations from the nodes to
the sentences and on the node level by mapping the
implements’ co-reference predictions to the nodes of the
graph. Consequently, they recognized that AllenNLP
with SpanBERT embedding, in general, attained the best
results. Afterwards, they presented how the output of a
co-reference model can be integrated into the predictions
of an AMR parser. They exploited the neural semantic
parser that produced a graph for the input sentence
compositionally, with the aim of mapping co-referent
input tokens to the predicted graph’s nodes. The co-
reference chains, which are annotated in the MS-AMR
corpus are really heterogeneous. At the token level,
mentions of the same chain can be represented as nouns,
pronouns or verbs. Fig. 7 presents an example in which
the chain consists of various concepts at the node level:
it, thing, harm-01, cut-01. These kinds of chains are not
easy to predict for the AllenNLP co-reference model
since they have different POSs and are semantically
nontrivial (cut/harm). In the test set of this corpus, 35%
of all co-reference chains contained entities, which were
expressed with multiple different POS.

—<identchain relationid="rel-1">
<mention concept="it" id="DF-200-192400-625_7557.9" variable="i2"/>

<mention concept="thing" id="DF-200-192400- 7.24" variable="13"/>
<mention concept="it" id="DF-200-192400-625 7557.27" variable="i2"/>
<mention concept="harm-01" id="DF-200-192400-625 7557.35" variable="h"/>
<mention concept="cut-01" id="DF-200-192400-625_7557.3" variable="c4"/>
<mention concept="do-02" id="DF-200-192400-62 7.17" variable="d2"/>
<mention concept="cut-01" id="DF-200-192400-625_7557.8" variable="c"/>
<mention concept="this" id="DF-200-192400-625_7557.29" variable="t"/>
<mention concept="harm-01" id="DF-200-192400-62 7.1" variable="h"/>
<mention concept="cut-01" id="DF-200-192400-6 557.6" variable="c"/>
<mention concept="it" id="DF-200-192400-625_7557.36" variable="{"/>
<mention concept="thing" id="DF-200-192400-625 7557.28" variable="t2"/>

</identchain>

Figure 7. Heterogeneous co-reference chain example from MS-AMR
[24].

Although, AMR parsing approach already manages
some cases of co-reference in the AMR graphs, some
AMR nodes can create co-reference chains without
having any token alignments. For instance, the AMR
graph of the sentence Speak to a consultant has a separate
node you as ARGO of speak-01. However, this node does
not correspond to any token in the sentence. In the test set
of this corpus, 9% of all co-referent mentions do not have
any alignments and the token-based co-reference
resolvers could not tackle them.

Another point which was proved in [24] was that
incomplete or incorrect node-token alignments could
have negative effect on the performance. This happens
when the gold annotation contains generic concepts,
which are represented in the AMR graphs but not
detected at the token level. In the test set of this corpus,
10% of all co-referent nodes referred to generic concepts
such as country, person, or thing. It becomes an issue
when AllenNLP finds the co-reference with more
particular nodes like dad or China. In brief, tokens like
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dad is aligned to the related node like dad in the AMR
graph whilst the more generic nodes like person do not
have an alignment. Although, the gold co-reference chain
contained only person as a member that results in the
incorrect classification of dad as false positive however
both nodes correspond to the same entity actually.

Additionally, the authors recognized cases of wrongly
resolved personal pronouns as some texts were borrowed
from forums and the spokesman could switch during the
conversation. Therefore, different people could
understand different meanings. For instance, in the
sentence Or should I; ... just keep an eye on the anxiety
until it becomes a problem? Well I, wouldn 't try to keep
an eye on anxiety for a start because that will make u,
tense from MS-AMR test set, the first sentence has the
pronoun I; which refers to the same entity as u; in the
second sentence. The I, pronoun in the second sentence
corresponds to a different speaker. As the input text for
the co-reference tool did not have any Meta information
about the speakers, the tool resolved both occurrences of
I as referring to the same entity. In the test set of this
corpus, this problem influenced 9% of the co-reference
chains.

In another research, Fu et al. [25] designed an end-to-
end AMR co-reference resolution framework with the
aim of creating multi-sentence AMRs. Their proposed
model diminished error propagation in comparison with
the previous rule-based and pipeline methods. Besides,
for both in- and out-domain situations, it was more
robust. Considering two sentences; Bill left for Paris and
He arrived at noon, Fig. 8 illustrates the schema of their
proposed framework that included a graph encoder, a
concept identifier, and an antecedent prediction module.

@ @' @' @ @b W @:sn O @ s @ dopped
leave-11  vi' — ) %‘ _“. s(duumny €, be)

peason vi* — QOO lelo) - QK % 5
e v —Q@—@K—\- ;—m Ooe—ig| &
Bill o DO~ < - 90 @ e Sk
v ] |8 7 ik
amive-0l vi* _(l %E—Aﬁ’/ v.;’ -C* o— £
be + —SO—@ F— Y ) & @ et

ey v —DO—D S ) S Leype * Lantecetens = £

Input Representation ~ GRN Encoder  Concept Identification Antecedent Prediction

Figure 8. The end-to-end AMR co-reference resolution framework
proposed in [25].

As seen in Fig. 8, they exploited a graph neural
network to represent input AMRSs for inducing expressive
characteristics. They built connections between sentence-
level AMRs by linking their roots, with the aim of
enabling cross-sentence information exchange. More,
they defined a concept identification module to detect
functional graph (non-concept) nodes like person, entity
nodes such as Bill, verbal nodes with implicit role like
arrive-01 and other regular nodes such as leave-11 to
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upgrade the performance level. The final prior prediction
is taken from the chosen nodes and all their conceivable
prior candidates.

AMR does not have a systematic treatment of
projection phenomena, thus, its translation to logical
form is not easy. Lai et al. [26] designed a translation
function from AMR to FOL by applying continuation
semantics that enabled to detect the semantic context of
a statement in the form of an argument. It was a natural
extension of AMR’s principal structure, which aimed to
model basic projection phenomena, like negation and
quantification, as well as complicated phenomena, like
donkey anaphora and bound variables. In their definition,
a continuation of an expression encodes surrounding
contextual information related to its interpretation. In
particular, the continuation assumption supposed that
some natural language statements define methods, which
consider their own semantic context as an argument.
According to their work, continuations had remarkable
results for the representations related to the predicative
core in the structure of an AMR graph. A case in point is
that it enabled the graph to be rooted at the predicate level
as well as considering the continuation as a correlated
argument to the relation related to that predicate.
Therefore, their approach enabled to use standard AMRSs
without attaching properties or changing the graphs, plus
allowed to extract valid inferences.

In general, continuations could be considered as a
pragmatic solution to AMR to FOL translation issue.
Considering an expression’s continuation as an
associated argument to the relation associated with that
predicate, the AMR’s focus was maintained on the
predicative core, however, still enabled valid inferences
from projection phenomena to fall out. The model
proposed in [26] did not have under-specification
problem, so it allowed both to prioritize the most feasible
interpretation of a scope ambiguity and to detect fewer
common interpretations where necessary. Additionally,
this model did not alter standard AMR edges, nodes, or
leaves, enabling to exploit existing AMR corpora.
Mapping fundamental projection phenomena to AMR
could smooth the path for more comprehensive meaning
representation, enabling plain translation of complicated
phenomena, like negative raising that prove speaker
intent and belief. Another remarkable superiority of the
continuation-passing model for utterance or sentence
level expressions was the modest way it could be
extended to AMR models that have been used in human-
robot interaction dialogues. In other words, their
introduced model could adopt the dynamic semantics of
discourse moves as continuations. In addition, in
continuation semantics, the order of application specified
the relative scope of a predicate and each of its
arguments. Unlike previous research, in [26] the
outgoing roles of a predicate which should be ordered
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were taken, and the order of application to be the order
the arguments were written in the AMR.

Bonn et al. [27] proposed an expansion to the AMR
annotation layout, which detected fine-grained
pragmatically and semantically inferred spatial
information in grounded corpora. They introduced a
lexical group conceptualization and set of spatial
annotation tools created in the context of a multimodal
corpus including 185 3D structure-building dialogues
between a human architect and builder in Minecraft.
Minecraft presented a specifically advantageous spatial
relation-elicitation environment as it automatically
tracked orientations and locations of objects and avatars
in the space based on an absolute Cartesian coordinate
system. Via a two-step document and sentence level
annotation process proposed to detect implicit
information, they exerted these bearings and coordinates
in the AMRs together with spatial framework annotation
to build the spatial language in the ground of dialogues
to absolute space. This supplement took the fine-grained
spatial semantics and object grounding approaches of
previous layouts and apply them into MS-AMR. The
outcome was an annotation tool that could manage fine-
grained implicit and explicit nested spatial relations,
which were structured in quantified space and combined
fluidly with event dynamics. In addition, as the spatial
annotations were merged into the domain-general AMR
graphs, their proposed method determined information
about the way spatial relations were displayed in the
context of whole sentences and overall discourse. In
brief, they proposed span single- and multi-sentence
annotation. At single-sentence one, a general semantic
roles and frames set beside relation-specific role-sets
were introduced. Both the role-sets and conceptualization
targeted lexical units from various POSs (and then
adverbs and prepositions) and took considered intrinsic
properties and extrinsic relations related to orientation,
location, configuration, direction, extent, topology, and
particularly Frame of Reference (FoR). At the multi-
sentence one, they introduced layers of co-reference
annotation and bridging which detected implicit spatial
knowledge and assisted in grounding. A significant
addition to MS-AMR was incorporating an existential
dummy AMR graph, which placed the configurational
stage for the spatial entities represented in the dialogue.
This dummy AMR graph introduced especial spatial
frameworks for each entity and the environment and
explained the way these frameworks mapped together.
Although Spatial AMR targeted to be adaptable to other
environments, they implemented it in the particular
context of their corpus of Minecraft structure-building
dialogues as an example of its range and characteristic.
This annotated corpus was applied to train a semantic
parser, for which they reported primary baseline
outcomes.
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As mentioned before, AMR does not represent scope
information, which leads to an issue for its total
expressivity and particularly for drawing inferences from
negated expressions. This phenomenon is called
«positive interpretations» of negated expressions, where
implicit positive meaning is detected using the opposite
of the negation’s focus inference. Stein and Donatelli
[28] studied methods for representing Potential Positive
Interpretations (PPIs) in AMR. They defined a logically
motivated AMR structure for PPIs, which built the focus
of negation explicit and planned an initial proposal for a
systematic approach to produce this more expressive
structure. In this regard, they attempted to detect if these
structures can be systematically generated from the
negated sentences AMR. Thus, they introduced a
logically motivated AMR structure which made both
negation focus and scope explicit. Further, they modeled
an initial plan for transforming common AMRs to this
more expressive model. Their primary evaluations about
scope explicit supported previously made experiments
that AMR missed expressive capacity. According to their
observation, this weakness was particularly problematic
for PPIs whose bound meaning results from an
interaction of the information and negation structure. In
brief, their proposed method allowed expressing the
negations foci in AMR without altering the principal
AMR.

As AMR cannot represent non-veridical intentional
contexts completely, Williamson et al. [29] addressed the
problem of non-veridicality without resorting to layered
graphs via a mapping from AMRs into Simply-Typed
Lambda Calculus (STLC). This solution, in some cases,
needed a new role, called :content, to be introduced that
worked as an intentional operator. Besides, in de re or de
dicto ambiguities they tackled the quantifier scope
interaction and intentional operators. With this aim, they
added a scope node and designed an explicit multi-
dimensional meaning using Cooper storage that resulted
in deriving the de re and de dicto scope readings and
intermediate scope readings. It is noteworthy that the
:content role and its intentional translation can facilitate
downstream NLP tasks. Particularly, different state
predicates trigger different lexical inferences due to their
semantic nature and state considering whether they are
non-veridical like believe-01, factive like know-01 or
counter-factive such as pretend-01.

It has been mentioned that AMR has potential
usefulness in NLP tasks like MT and NLG. Although, it
suffers from lacking some aspects, like eliminating
implicit time information that carries meaning. To cover
this weakness, Donatelli et. al. [30] attempted to add
aspect and tense tags to AMR, which leads to enhance its
ability in meaning representation. Bakal [31] designed a
rules-based approach to attach the roles from Donatelli et
al. to standard AMR trees, applying semantic information
encoded in the dependency tree representation on the

same sentence. In brief, Bakal’s study had presented the
necessity of a couple of modifications related to the time
rules in the standard AMR. In these works, all the
represented sentences had at least one type of aspect and
tense noted implicitly, and in most cases, eliminating the
aspect and tense would result in a notable difference in
meaning. As they mentioned, on condition that AMR
wants to be applied as a pragmatic meaning
representation model, it requires including this
information. In this regard, the proposed method could be
exploited to fortify it. Besides, it can be considered that
the Bakal’s classifier was fairly accurate at encoding and
detecting the needed information.

I1l. AMRPARSING

The process of mapping sentences in natural language
to their semantic representations is Meaning
Representation or Semantic Parsing. Therefore, the AMR
parsing task is mapping natural language strings to AMR
semantic graphs. In recent releases of the AMR bank, a
great sympathy in this task has drowned and a
considerable number of efforts has been done on it as
follows:

Szubert et al. [32] mentioned and discussed various
linguistic phenomena responsible for reentrancies in
AMR, like Co-reference, Coordination, Control, Adjunct
control, Ellipsis, Relative clause, Nominal Control and
Verbalization, then grouped reentrancy triggers in three
types: syntactic, pragmatic, and AMR-specific.
Additionally, they divided error types that AMR parsers
usually make with respect to it in different categories.
Table 1 depicts percentage of reentrancies in the
LDC2015E86 training set according to their paper.

TABLE |
PERCENTAGE OF REENTRANCIES IN LDC2015E86 TRAINING SET.
Phenomenon Frequency (%)
Co-reference 37
Adjunct control 16
Control verbs 4
Coordination 17
Verbalization 14
Pragmatic overreach 3
Ellipsis 2
Control-like structure 2
Annotation mistakes 5
Total 100

Accordingly, they ran oracle experiments to probe the
effects of the error types on both overall parsing score
and reentrancy prediction (Table 2). The actions they
applied are as follow:

e ADD: Adding a reentrancy edge.

e ADD-ADDN: Adding a reentrancy edge and a

node.

o REMOVE: Removing a reentrancy edge.

¢ REMOVE-RMN: Removing a reentrancy edge and

a node.
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MERGE: Merging two nodes.

MERGE-RMN: Merging two nodes and removing
a node.

SPLIT: Splitting a node in two already existing
nodes.

SPLIT-ADDN: Splitting a node in one existing
node and a new node.

o ADD-SIB: Adding an edge between siblings.

o ADD-SIB-ADDN: Adding a node and an edge with
one of its siblings.

e REMOVE-SIB: Removing an edge between
siblings.

¢ REMOVE-SIB-RMN: Removing an edge between
siblings and one of the siblings.

TABLE 2
RESULTS OF APPLYING ACTIONS ON THE TEST SPLIT OF LDC2015E86 AND LDC2017T10 [32].
Action LDC2015E86 LDC2017T10
Frequency Smatch Reentrancy Frequency Smatch Reentrancy
ADD 1292.0 1.7 10.4 1305.7 1.7 10.3
ADD-ADDN 330.0 0.8 42 281.3 0.7 31
RM 545.7 0.4 -0.1 572.3 0.4 -0.1
RM-RMN 217.0 0.3 0.6 224.7 0.2 0.8
MERGE 187.3 0.4 1.6 193.3 0.4 1.7
MERGE-RMN 94.3 0.3 1.0 84.0 0.2 0.9
SPLIT 574.7 1.2 1.8 541.3 11 1.7
SPLIT-ADDN 333.0 0.9 -0.2 347.3 0.9 0
ADD-SIB 128.0 0.2 13 119.7 0.1 1.2
ADD-SIB-ADDN 99.7 0.1 -0.1 104.3 0.1 0
RM-SIB 69.3 0.1 0.2 89.3 0 0.2
RM-SIB-RMN 0 0 -0.1 0 0 0
All 3108.3 4.6 18.8 3093.7 4.4 18.0

In Table 2, Frequency is the number of times the
action could be applied, Smatch equals the parsing score,
and Reentrancy shows the reentrancies prediction score.
The table showed that the best improvements could be
observed when applying all actions and the most relevant
single oracle action was ADD. By correcting these errors,
they could enhance Smatch in parsing performance and
in reentrancy prediction. They detected main sources of
reentrancies which have been ignored before. However,
their heuristic models failed to find the causes of many
reentrancies.

We have categorized the AMR parsing methods into
five main groups, which in the following sections, we
will explain previous research in each category.

A. Grammar-based method

In these methods, a grammar is used to limit the
graphs that are desired during a parsing process. Then,
the graph with the highest score, which determined by a
scoring function, would be the output. There are many
grammar-based approaches to AMR parsing. Most of
them include parsers based on Synchronous Hyper-edge
Replacement  Grammars (SHRGs), Combinatory
Categorical Grammars (CCG), and Directed Acyclic
Graph (DAG) automata.

Chiang et al. [33] represented HRG!, which is one of
the leading context-free rewriting grammars. It can be

"' Hyper-edge Replacement Grammars

20

applied as an impressive formalism for graph recognition
task on NLP applications, which works with large-scale
graphs. They also expanded the HRG formulation to its
Synchronous version SHRG, as the foundation for
possible related tasks, like graph generation and parsing.

Later, Peng et al. [34] and Peng and Gildea [35], for
the first time suggested a real system for parsing AMRS
with the use of SHRG. This parser modeled natural
language strings with CFG? and AMR graphs with HRG.
Then, in the source side, a synchronous grammar was
formalized with CFG and similarly, in the target side,
with HRG. Having this synchronous grammar, the
proposed parser could parse the considered sentence
using CFG rules, and meantime could evolve the related
graph from the derivation by deduction. Afterwards, to
extract the appropriate set of SHRG rules from the
training data, a sampling algorithm called Markov Chain
Monte Carlo (MCMC) was used to learn the most
probable derivation according to sentence to AMR
alignments. They exploited MCMC algorithms to learn
SHRG rules from a forest that represents likely
derivations consistent with a fixed string-to-graph
alignment. Fig. 9 illustrates a sampled derivation from
the forest.

2 Context Free Grammar
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The boy wants the girl to

Al
believe him.

Figure 9. The sampled derivation for the (sentence, AMR graph) pair
[34].

Another grammar formalism is Combinatory
Categorical Grammar (CCG) which establishes a
transparent interface between underlying meaning
representation and surface syntax, has been widely
applied in semantic parsing applications. First time Artzi
et al. [36] suggested applying CCG formalism for parsing
AMR. They proposed a process with two phases, to take
advantage of this formalism completely and keep a
relatively compact grammar. In the first phase, CCG is
used for parsing a considered sentence to an unspecified
logical structure. It was a lambda-calculus equal form of
AMR representation, which does not include non-
compositional reasoning. In the second phase, a factor
graph model eliminates the unspecified part of structure
that needs global deduction. CCG-based AMR parser has
some notable benefits. For example, it does not need a
sentence-to-AMR alignment. This feature helps to
prevent the error propagation from the aligner.
Furthermore, the feature enables it to be generalize to
more languages. Fig. 10 illustrates the factor graph used
in generating the complete derivation for the sentence
Pyongyang officials denied their involvement, including
all the variables and a subset of the factors.

Figure 10. A visualization of the factor graph constructed for an
example sentence’s derivation [36].

In Fig. 10 variables are highlighted in gray and the set
of possible assignments are marked with a dashed arrow.
Plus, solid lines represent edges. This example just
includes a subset of the factors. Factor A takes selectional
preference between the have-org-role-91 and official to
detect the REL relation. Factor B does the same for
person and have-org-role-91 to detect REF-of. Both

21

factors C2 and C3 account for selectional preferences
when resolving ID. In C2, they considered the
assignment 2, which makes an ARG1 relation between
involve-01 and person. Similarly, C3 considers the
assignment 3.

B. Graph-based method

These techniques attempt to construct a graph, by
maximizing a scoring function for graphs.

Flanigan et al. [37] introduced Graph-based AMR
parsing methods and JAMR was the first AMR parser
they proposed. The idea of JAMR method is inspired
from graph-based techniques that are suitable for non-
projective syntactic dependency parsing. This approach
is extensively used for identifying relations. They
proposed an algorithm, which first identified the concepts
by using a semi-Markov model and then identified the
relations between them by searching for a Maximum
Spanning Connected subGraph (MSCG). In order to get
English AMR alignments in the pre-processing step, they
represented a heuristic aligner based on a pre-defined set
of rules.

Jones et al. [38] introduced the first meaning-based
SMT by applying a graph-structured semantic
representation as a transfer layer between the source and
the target language. They defined 3 methods for every
stage of the semantics-based translation pipeline: one
graph-to-word alignment algorithm and 2 synchronous
grammar rule extraction algorithms. Plus, they studied
the impact of syntactic annotations on semantics-based
translation by designing 2 alternative rule extraction
algorithms: one that needed just semantic annotations
and one that used syntactic annotations and checked the
influence of language and syntax bias in meaning
representation structures by doing tests with 2 meaning
representations, one biased toward an English syntax-like
structure and one that was language neutral.

Pourdamghani et al. [39] presented a statistical
alignment model that unlike heuristic approaches, would
automatically improve as more data becomes available.
While the potential applications of AMR are manifold,
their research explored the use of AMR in SMT. Their
proposed model had 3 phases: pre-processing, training,
and post-processing. In the pre-processing phase, they
linearized the AMR graphs in order to convert them into
strings, clean both the AMR and English sides by
eliminating stop words and simple stemming and add a
set of corresponding AMR/English token pairs to the
corpus to help the training phase. The training phase was
based on IBM models, but they modified the learning
algorithm to symmetrically learn the parameters.
Eventually, in the post-processing stage they rebuild the
aligned AMR graph.

In addition, Xue et al. [40] studied the use of AMR as
mediator between multiple languages, suggesting that a
higher level of abstraction might be significant to account
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for lexicalization differences between languages. They
translated 100 English sentences that had AMRs into
Chinese and Czech in order to build AMRs for them.
Then, they did a cross-linguistic comparison of English
to Chinese and Czech AMRs, and it showed that in both
cases the structure of AMRs for the language pairs were
aligned acceptably and cases of linguistic divergence.
Additionally, they recognized that the level of
compatibility of AMR between English and Czech is
lower than between English and Chinese. Thus, they
declared that these comparisons could be useful for
further improving the annotation standards for each of the
3 languages and can result in more compatible annotation
guidelines between the languages.

In recent years, the JAMR parser framework has been
investigated in two research. Both considered that the
concept identification issue is a serious bottleneck and
worked on it to solve this problem in the parser. Werling
et al. [41] proposed an action set, which generate
concepts, and during the concept identification stage,
trained a classifier to generate extra concepts. These

Algorithm 1 The incremental decoding algorithm for

relation identification.

Input: A sequence of concept fragments (¢, ¢o, ..., (2]
Output: Best AMR graph including (¢, co.....¢,)
1: agenda < {Empty-graph}
2: for i < 1...ndo
3 for state in agenda do
4: CalEdgeScores(state, ¢;)
5: (P1sp2s. .y P ) <— FindComponents(state)
6: innerAgenda <— state
75 for j < m...1 do
8: buf < NULL
9: for item in innerAgenda do
10: if 7 < n then
)l K Add only ¢; to the item
12: newitem <— item
13: Addltem(newitem., c;)
14: AppendA genda(bu [, newitem., i, n)
15: Add a left arc from ¢; to p; to the iten
16: newitem < item
17: le «— GetMaxLeftEdge(c¢;. pj)
18: Addltem(newitem,c;,le)
19: AppendAgenda(bu f. newiterm., i, n)
20: Add a right arc from p; to ¢; the item
21 newitem <« item
22 re <— GetMaxRightEdge(p;, ¢;)
23: Addltem(newitem,ci.le)
24: AppendAgenda(bu f, newitem, i, n)
25: Add both left and right arc to the itemn
26: Addlitem(item, ¢, le.re)
27 AppendAgenda(bu f,item, i, n)
28: inner Agenda <— B-best(buf)
29: agenda <— innerAgenda

30: return agendalO]
31: function AppendAgenda(bu f. iterm, i n)

32: parameter 7 represents the terminal position
33: if 7 = n then

34: CalRootFeatures(itern)

35: Appendltem(bu f,item)

actions are very similar to the sources of concepts that
proposed by Flanigan et al. [42]. Moreover, in the latter
paper, authors suggested the infinite ramp loss to enhance
the performance.

In another research, Zhou et al. [43] introduced a
graph-based parser that applied beam search method to
recognize both relations and concepts. They applied the
method for relation identification in an incremental
fashion (Fig. 11 — Algorithm 1), and then incorporated
the decoder into a unified framework based on multiple-
beam search (Fig. 11 — Algorithm 2), which allowed for
the bi-directional information flow between the two
subtasks in a single incremental model. They assigned
weight to relations and concepts. Therefore, the resulting
graph would have the highest score that satisfied similar
constrains as JAMR approach. In addition, they applied
the feature proposed in [37], and received an increase
value for Smatch [15] F1 score by five points.
Furthermore, in their research more features for concept
ID were also introduced, which results in another
improvement by 3 points.

Algorithm 2 The joint decoding algorithm.
Input: Input sentence (wy, w2, ..., wn)
Output: Best AMR graph derived from @

11 agendas|0] <— 0

2: last < Scan(x)

3: for i< 1...n do

4: list < Lookup(x.17)

55 if list.size > 0O then

6: preAgenda < agendas|i 1]

74 for cf € list do

8: end < i -+ ¢ f.size 1

9: if preAgenda.size = 0 then

10: g <— Graph.empty

11: CalConceptFeatures(g. ¢ f)

12: AppConcept(agendas. end. g.cf. last)
13: else

14: for item € preAgenda do

15: g « item

16: CalConceptFeatures(g. ¢ f)

17: AppConcept(agendas. end, g, cf.last)
18: Union(agendas, i, i 1)

19: else

20: agendas|i] < agendas|i — 1]

21: bestGlraph < agendas|last][0]
22: return bestGhraph

Figure 11. The pseudocode for algorithms used in [43].

The next graph-based AMR parser is the one that has
been represented in [44] and then improved in [45]. In
this parser, five Bi-LSTM' networks were used, to make
probability prediction for concepts, attributes, named
entities, core argument relations and non-core relations.

! Long Short-Term Memory

22

Like the JAMR approach that has been introduced
before, this parser detected concept fragments first.
Afterwards, it linked them to each other via adding some
edges meet similar constraints, exactly like JAMR
approach. The remarkable difference between this parser
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and JAMR, is the algorithm that has been used in this
parser to add the required edges. This algorithm is
greedy, that calculated probabilities just after adding each
edge.

Rao et al. [46] used learning methods, as search tools,
to predict (find) target AMR graphs. Same as JAMR
approach, concepts and relations are predicted,
respectively. In the next step, this prediction may use the
previous predictions results. In their research, the
decomposer (graph to fragments) and the aligner, were
completely similar to JAMR, however, it did not have a
linkage constraint. Instead, the graph is linked by
choosing a top node and linking all components to this
selected node.

C. Transition-based method

These algorithms produce a graph within a sequence
of actions. When an action is chosen, the alternatives of
that action are not revised again.

Parsers, which use these methods, consider the
parsing process as application of a sequence of actions.
Wang et al. [47], for the first time, introduced the idea of
these algorithms for AMR parsing as transition-based
dependency parsing algorithms. When a transition-based
algorithm is applied, the AMR graph would be created in
an incremental way, using actions that were chosen by a
desired classifier.

The transition-based method has been applied in
previous research to transform the existing dependency
trees to AMR graphs, and to directly transform sentences
with possible extra annotations to AMR graphs [48-52].

For instance, Wang et al. [53] proposed a two-stage
framework to parse a sentence into its AMR. Firstly, they
applied a dependency parser to generate a dependency
tree for the sentence. Secondly, they introduced a
transition-based  algorithm that transforms the
dependency tree to an AMR graph. In this regard, they
defined eight types of actions for the actions set.

Brandt et al. [54] tried to improve AMR parsing using
preposition semantic role labeling information retrieved
from a multi-layer feed-forward neural network.
Prepositional semantics was included as features into the
transition-based AMR parsing system CAMR. The
inclusion of the features changed the CAMR behavior
when creating meaning representations triggered by
prepositional semantics. Prepositions in conjunction with
their arguments made a significant contribution to the
meaning of sentences and therefore were a very intuitive
supplement to AMR parsing.

Goodman et al. [55] designed 2 extensions to AMR:
1) Noise reduction, 2) Targeted exploration. The first one
targeted the result of the complexity of the task and
relieved the noise in the feature representation. The
second one aimed the exploration steps of imitation
learning towards scopes which were probable to give the
most information in the context of a large action-space.
They considered imitation learning methods as a toolbox
which could be adjusted to fit the task’s specifications.

Ballesteros and Al-Onaizan [56] proposed an AMR
parser which generated AMR parses from plain text
directly. They applied Stack-LSTM:s in order to represent
the parser state and make decisions greedily. The input of
their parser was plain text sentences, and, through rich
word representations, it predicted all actions (in a single
algorithm) needed to generate an AMR graph
representation for an input sentence; it managed the
detection and annotation of named entities, word sense
disambiguation and it made connections between the
nodes detected towards building a predicate argument
structure. Although the system which runs with just
words is very competitive, they further improved the
results incorporating POS tags and dependency trees into
their model. Table 3 presents the parser actions and the
effect on the parser state (contents of the stack, buffer)
and how the graph was changed after applying the
actions.

TABLE 3
PARSER TRANSITIONS [56].

Stacky Buffer, Action Stackyyq Buffer, Graph
S u,B SHIFT u,S B

u, S B CONFIRM n,S B

u, S B REDUCE S B
u,v, S B MERGE (u,v), S B

u, S B ENTITY(I) (u:1,s B -

u, S B DEPENDENT(r.d) u, S B uhd
uv,S B RA(r) uv,S B v
uv,S B LA(r) uv,S B usv
u,v,S B SWAP u,S V,B

23


https://joc-isice.ir/article-1-1044-fa.html

[ Downloaded from joc-isice.ir on 2025-07-10 ]

13

Journal of Control (English Edition), VOL. 18, NO. 01, June 2024

Moreover, Fig. 12 depicts transition sequence for the
sentence It should be vigorously advocated.

ACTION STACK BUFFER

INIT It, should, be, vigorously, advocated, R
SHIFT it should, be, vigorously, advocated, R
CONFIRM (it should, be, vigorously, advocated, R
SHIFT should, it be, vigorously, advocated, , R
CONFIRM |recommend-01, it be, vigorously, advocated, R
SWAP recommend-01 it, be, vigorously, advocated, R
SHIFT it, recommend-01 be, vigorously, advocated, R
SHIFT be, it, recommend-01 vigorously, advocated, R
REDUCE |it, recommend-01 vigorously, advocated, R
SHIFT vigorously, it, recommend-01 advocated, R

CONFIRM |vigorous, it, recommend-01 advocated, R

SWAP vigorous, recommend-01 it, advocated, R

SWAP vigorous recommend-01, it, advocated, R
SHIFT recommend-01, vigorous it, advocated, R

SHIFT it, recommend-01, vigorous advocated , R

SHIFT it, recommend-01, vigorous advocated, R

SHIFT advocated, it, recommend-01, vigorous |R

CONFIRM |advocate-01, it, recommend-01, vigorous R

LA(ARG1) |advocate-01, it, recommend-01, vigorous|R

SWAP advocate-01, recommend-01, vigorous it R

SHIFT it, advocate-01, recommend-01, vigorous|R

REDUCE  |advocate-01, recommend-01, vigorous  |R

RA(ARG1) |advocate-01, recommend-01, vigorous  |R

SWAP advocate-01, vigorous recommend-01, R

SHIFT recommendO 1, advocate-01, vigorous R

SHIFT R, recommend01, advocate-01, vigorous

LA(root) R, recommend01, advocate-01, vigorous

REDUCE  |recommend01, advocate-01, vigorous

REDUCE |advocate-01, vigorous

LA(manner) advocate-01, vigorous

REDUCE  |vigorous

REDUCE

(r / recommend-01
:ARGl (a / advocate-01
ARGl (i / it)
:manner (v / vigorous)))

Figure 12. Transition sequence for an example sentence (R represents
the root symbol) [56].

Damonte et al. [57] introduced a transition-based
approach which created AMR graphs in linear time via
processing the sentences in a left-to-right manner. This
approach was inspired by the ArcEager transition method
for dependency tree parsing and was trained with
feedforward neural networks. The authors noted that
there are three main differences between AMRs and
dependency trees which need extra adjustments for
dependency parsers to be applied on AMRs. The first
difference between these two structures is projectivity.
English dependency trees are commonly projective,
which means that there will not be any crossing arcs on
condition that the edges have been drawn in the semi-
plane above the words. Although this limitation is
agitated in English syntactic theories, it is not motivated
for AMR structures. Secondly, unlike dependency trees,
AMRs are graphs (not trees), as they could have nodes
with multiple parents (reentrant nodes). Thus, in order to
handle reentrancy, they dropped this constraint. Thirdly,
in AMR there is not any straight mapping between a node
in the graph and a word in the sentence. Hence, to
determine alignments between the tokens in the sentence
and the nodes in the AMR graph, they ran the JAMR
aligner.

! https://link.springer.com/chapter/10.1007/978-1-349-20568-4_1

Peng et al. [58] introduced a technique that linearized
AMR graphs in a way that could detect the interaction of
relations and concepts. With the aim of tackling the data
sparsity problem for the target vocabulary, they designed
a categorization approach that initially mapped low
frequency concepts and entity subgraphs in order to a
reduced set of category types. Plus, they applied heuristic
alignments in order to connect source side spans and
target side concepts or subgraphs, for mapping each type
to concepts of its corresponding target side. In decoding
phase, they exploited the mapping dictionary, which was
learned from the training data, or heuristic rules for
certain types with the aim of mapping the target types to
their corresponding translation as a post-processing
procedure. In general, they introduced multiple
techniques to create the sequence-to-sequence model
work competitively against conventional AMR parsing
systems.

Groschwitz et al. [59] proposed a semantic parser for
AMR that parsed strings into tree representations of the
compositional construction of an AMR graph. They
exploited standard neural methods for super-tagging and
parsing dependency tree, limited by a linguistically
principled typed system. To be more precise, they tried
to make the compositional structure of the AMR explicit.
They considered an AMR as concepts including atomic
graphs that represent the words meanings. Besides, they
merged compositionally by applying linguistic
operations for merging a head with its modifiers and
arguments. The authors designed this construction as
terms over the AM algebra as proposed in [60], which
had not any parser. In this regard, they illustrated that
these terms can considered as dependency trees of the
string, and they defined a dependency parser to map it to
the related tree. In other words, they merged a neural
super-tagger to detect the initial graphs for the individual
words with a neural dependency approach. One
significant issue is that the decoding issue was NP-
complete, as the output term of the AM algebra had to be
well-typed semantically. Therefore, they introduced two
approximation algorithms. One of them took the
unlabeled dependency tree as given and the other one
presumed all dependencies were projective.

Non-projective parsing could be beneficial for
managing reentrancy and arbitrary loops natively in
AMR graphs. In this regard, Vilares and Gomez-
Rodriguez [61] proposed a non-projective transition-
based parser that worked in a left-to-right greedy manner.
In their model, at every parsing setup, an oracle decides
whether to make a concept or to link a pair of existing
concepts. The single-head and acyclicity! constraints are
not required in AMR, because arbitrary graphs are
allowed. Thus, in their method, reentrancy and cycles
were exploited in order to model semantic relations
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among concepts and to detect co-references. In this
respect, they could propose a natural way to deal with
them by eliminating the constraints from the Covington
transition system. Besides, AMR parsing needs words to
transform into concepts, and dependency parsing
performed on a constant-length sequence. However, in
AMR, words can be eliminated or produced a single or
several concepts. Hence, in their work, further transitions
and lookup tables designed in order to generate concepts
when necessary.

Wang et al. [62] represented a parser that formalized
the AMR parsing procedure as a converting task from a
dependency tree to an AMR graph. In addition, the
perceptron algorithm was used to learn a linear model. In
this PhD thesis, the author mentioned various properties
of AMR parsing and accordingly introduced various
algorithms to address them. In order to create the
fundamental framework for graph parsing, Wang
proposed a transition-based method that formalized
AMR parsing as tree-to-graph transformation.
Furthermore, different natural extensions to the parser
explored, like inferring abstract concepts and exploring
the richer feature space. Moreover, for handling the
sparsity properties of AMR, the author applied a neural
sequence labeling method to identify concepts.
Afterwards, Wang introduced an automatic aligner that
was far more suitable for the sentence-to-graph
alignment plan. In addition, the author defined an end-to-
end Neural AMR parser that explored the possibility of
handling all AMR phenomenon by applying an
integrated model. Eventually, He could extend all this on
English AMR parsing to Chinese AMR corpus without
notable modification.

Guo and Lu [63] defined a simple and efficient
transition-based AMR. They operated the search in a
purified search space using a compact AMR graph and
an improved oracle. First, they introduced a compact
representation for AMR graph. It made concepts and
relations of an AMR graph easier and simplified the
learning of the whole system. Then, based on that, they
proposed a method to build the action sequence applied
for training their model. The compact AMR graph
included removing concepts and relations from an
original AMR graph. For removing concepts, they
divided AMR concepts into two groups: Lexical and
Non-Lexical. Lexical concepts were extracted directly
from tokens in the sentence, like lemmas, predicates with
sense tags and tokens with quotation marks. Non-Lexical
concepts were extracted by their child concepts, not
directly from tokens in the sentence. Besides, for
removing relations, they omitted specific relations in the
original AMR graph in order to refine the search space.
In addition, they designed some properties, which caused
the compact graph to refine the search space more, such
as Acyclicity, Simple, Non-terminal restricted and
Reentrancy restricted. They achieved remarkable results
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for Named Entities, Concepts and Wikification.
Additionally, they obtained acceptable results on
reentrancy identification. However, they eliminated
several reentrant edges during training phase. Their
proposed compact AMR graph could encode significant
information, but their model did not have good enough
performance on predicating Negations. In this regard,
one reason was that the parser was a word-level one, and
it was not easy for it to detect morphological
specifications, like prefixes «in», «un», «il» etc.

Naseem et al. [64] reinforced the Stack-LSTM AMR
parser. They did this via fortifying training with self-
critical Policy Learning and considering the sentence-
level Smatch score as reward of sampled graphs. Besides,
they merged some AMR-to-text alignments with an
attention mechanism, and they applied named entities,
pre-processed concept identification and contextualized
embedding in order to fulfill the parser. Their proposed
method was specifically suitable for AMR parsing,
because it solved the problems arising from the lack of
token-level AMR-to-text alignments. In addition, they
applied different modifications that were inspired from
neural MT.

Welch et al. [65] investigated the impact of using
world knowledge in semantic parsing with AMR. They
tried to find different types of errors of AMR parsers and
tackle these errors by exploiting world knowledge to
decrease them. The authors concentrated on three groups
of knowledge from Wikipedia entity links, WordNet
hypernyms and super senses, and retraining a named
entity recognizer with the aim of detecting concepts in
AMR. Their initial results showed that the retrained
entity recognizer was not flawless and could not detect
all concepts in AMR. Besides, they studied the
limitations of the named entity features by using a set of
oracles, which proved it could have positive impact on
performance and condition that it can detect various
subsets of AMR concepts. After examining the impact of
various types of world knowledge for AMR semantic
parsing, they investigated the upper bound on world
knowledge by applying gold annotations and attempted
to give modern visions about the world knowledge’s
potential in computational techniques to AMR parsing.
Eventually, they proposed methods to improve the
performance of AMR parsers. Specifically, they
recognized that the combination of WordNet features
named entities could lead to perfect results on almost all
metrics, except Negation and SRL. Moreover, they tried
to exploit other types of world knowledge, such as word
embedding and node embedding, and it did not result in
expected improvements. This presented that following
research methods in AMR parsing should concentrate on
improvements in training data or parsing approaches.

Gu et al. [66] designed a general AMR parsing model
that employed a two-stack-based transition algorithm.
They applied the model on Chinese and English datasets.
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The model could parse the input sentences to AMR
graphs in linear time, incrementally. The main approach
of their paper was based on the arc-eager algorithm. It
used heuristic search method for concept recognition. In
order to modify the transition algorithm to suit AMR
transformation, they introduced a two-stack-based
transition algorithm to solve the problem in AMR
parsing. This algorithm was an extended Shift/Reduce
decoding algorithm based on two stacks. They applied
more appropriate feature representation to enrich feature
representation learning in the prediction of transition
actions. As shown in Fig. 13, their proposed model
divided into 6 phases.

In Fig. 13, the main aim of AMR concept annotation,
named-entity recognition and pre-training phases was
pre-processing of their method. According to external
datasets, they trained word embedding using Word2Vec
model as the input of this model. The AMR concept
annotation, in phase 1, aligned words to concepts and
builds an alignment table through an aligner, which is the
input for the concept recognition phase. Additionally,
they utilize Corenlp! to label named entities in dataset as
features for the concept recognition module and
transition-based AMR parsing module.

1. AMR Concept Annotation

3. Concept Recongnition 4. Pre-training

: | Sentence 1

Aligner Aligoment fi 8 R \ Resources |
Table | _He wants to eat apples ' |

_______ | ] ord2vec |

gaveris—o domae I

“oncepts D |

5 d l

Primary Stack: [ROOT, i, 4.
02]

Sccondary Stack: []
Buffer: [z, 4],
A: { }

Generated graph

Figure 13. General automatic semantic parsing model from [66].

Zhou et al. [67] introduced a transition-based model
which, incorporated hard-attention over sentences with a
target-side action pointer mechanism to decouple source
tokens from node representations and address
alignments. They constructed the transitions and the
pointer mechanism through straightforward
modifications within a single Transformer architecture.
Parser state and graph structure information were
effectively encoded using attention heads. In other
words, they proposed an Action-Pointer mechanism that
could simply manage the generation of arbitrary graph
constructs, such as multiple nodes per token and
reentrancy. Their structural modeling with incremental

! https://stanfordnlp.github.io/CoreNLP/
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encoding of parser and graph states based on a single
Transformer architecture achieved the best results on all
AMR corpora among previous methods with resembling
learnable parameter sizes.

D. Sequence-to-sequence-based method

These methods, which are also called MT (Machine
Translation) methods, generate the textual format for an
AMR graph, straightly from the system input by
sequence-to-sequence neural methods. Commonly, it
needs some pre-/post-processing for simplifying the task.

Due to the increasing applications of deep learning
methods in NLP, researchers tried to use deep learning
algorithms for AMR parsing. As one of the most efficient
examples of them, neural networks have been widely
used in this field. The notable achievements of neural
network in computer vision and speech recognition field
could attract many scientists to try to reach similar results
in NLP branches, too.

Barzdins and Gosko [68] for the first time used the
sequence-to-sequence method for neural machine
translation. Actually, they treated preorder traversal of
AMR as foreign language strings and in this way, they
did AMR (PENMAN notation) parsing. Meanwhile, they
presented 2 extensions to the AMR Smatch scoring
script. The first one combined the Smatch scoring script
with the C6.0 rule-based classifier to produce a human-
readable report on the error patterns frequency observed
in the scored AMR graphs. The second one combined a
per-sentence Smatch with an ensemble method for
selecting the best AMR graph among the set of AMR
graphs for the same sentence.

Reciprocally, Konstas et al. [69] addressed the
sparsity issue by a self-training approach that employed
a huge unannotated external corpus set. They defined a
paired training procedure for improving both the text-to-
AMR parser and AMR-to-text generator. They first
applied self-training to bootstrap a high-quality AMR
parser from millions of unlabeled Gigaword sentences,
afterwards applied the automatically parsed AMR graphs
to pre-train an AMR generator. This paired training
allowed both the parser and generator to learn accurate
representations of fluent English text from weakly
labeled examples, which were then fine-tuned by human
annotated AMR data. Furthermore, they introduced a
pre-processing procedure for the AMR graphs, that
contained anonymizing entities and dates, grouping
entity categories, and encoding nesting information in
brief ways. Their pre-processing procedure boosted
handling the data sparsity as well as substantially
reducing the complexity of the AMR graphs. In this
regard, they presented that any depth first traversal of the
AMR is an effective linearization, and it is even possible
to use a different random order for each example.
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Foland and Martin [45] broke down the task of AMR
parsing into some distinct subtasks and did each subtask
using Bi-directional LSTM. Their system received an
input sentence in form of a vector of word embeddings
and applied a series of recurrent neural networks to 1)
identify the basic set of nodes and subgraphs that
comprised the AMR, 2) detect the set of predicate-
argument relations among those concepts, and 3)
discover any relevant modifier relations that were
present. As shown in Fig. 14, the parser extracted features
from the sentence that were processed by a bidirectional
LSTM network (B-LSTM) in order to create a set of
AMR subgraphs, that included 1 or 2 concepts, besides,
their internal relations to each other. Afterwards, features
were processed by a pair of B-LSTM networks based on
the sentence