Volume 15, Issue 2 (Journal of Control, V.15, N.2 Summer 2021)                   JoC 2021, 15(2): 69-80 | Back to browse issues page

XML Persian Abstract Print

1- Babol noshirvani university of technology
Abstract:   (12807 Views)
In this paper, a tracking decentralized Adaptive Integral Terminal Sliding Mode control (DAITSMC) technique is proposed for a class of linear interconnected mechanical systems with unknown linear interconnections between subsystems and in the presence of disturbance is considered. In this way, the interconnected system is divided into several subsystems. Then an integral terminal sliding surface is considered for each subsystem. The proposed approach increases the speed of input tracking in a finite time as well as the disturbance attenuation. The effect of unknown linear interconnections between subsystems is considered as uncertainty that is estimated by adaptive rules. The stability of the closed-loop system is guaranteed by a Lyapunov function and selecting the appropriate design parameters. The developed method is applied to two interconnected mechanical systems; the simulation results show that the proposed method (DAITSMC) is efficient for interconnected systems in the presence of disturbance. Comparison of simulation results with several control methods shows that the proposed method (DAITSMC) is efficient for linear interconnected systems in the presence of disturbance and the convergence error becomes zero faster.
Full-Text [PDF 876 kb]   (29 Downloads)    
Type of Article: Research paper | Subject: Special
Received: 2020/01/29 | Accepted: 2020/07/10 | ePublished ahead of print: 2020/07/20

1. [1] X. Xiang, C. Yu, and Q. Zhang, "Robust fuzzy 3D path following for autonomous underwater vehicle subject to uncertainties," Computers & Operations Research, vol. 84, pp. 165-177, 2017. [DOI:10.1016/j.cor.2016.09.017]
2. [2] S. Yu, X. Yu, B. Shirinzadeh, and Z. Man, "Continuous finite-time control for robotic manipulators with terminal sliding mode," Automatica, vol. 41, no. 11, pp. 1957-1964, 2005. [DOI:10.1016/j.automatica.2005.07.001]
3. [3] Q. Hu and G. Ma, "Variable structure control and active vibration suppression of flexible spacecraft during attitude maneuver," Aerospace Science and Technology, vol. 9, no. 4, pp. 307-317, 2005. [DOI:10.1016/j.ast.2005.02.001]
4. [4] C. Zhang, Z. Chen, and C. Wei, "Sliding mode disturbance observer-based backstepping control for a transport aircraft," Science China Information Sciences, vol. 57, no. 5, pp. 1-16, 2014. [DOI:10.1007/s11432-013-4787-8]
5. [5] E.-H. Zheng, J.-J. Xiong, and J.-L. Luo, "Second order sliding mode control for a quadrotor UAV," ISA transactions, vol. 53, no. 4, pp. 1350-1356, 2014. [DOI:10.1016/j.isatra.2014.03.010]
6. [6] D. Ginoya, P. Shendge, and S. Phadke, "Sliding mode control for mismatched uncertain systems using an extended disturbance observer," IEEE Transactions on Industrial Electronics, vol. 61, no. 4, pp. 1983-1992, 2013. [DOI:10.1109/TIE.2013.2271597]
7. [7] S. Mondal and C. Mahanta, "Chattering free adaptive multivariable sliding mode controller for systems with matched and mismatched uncertainty," ISA transactions, vol. 52, no. 3, pp. 335-341, 2013. [DOI:10.1016/j.isatra.2012.12.007]
8. [8] J.-J. Yan and T.-L. Liao, "Discrete sliding mode control for hybrid synchronization of continuous Lorenz systems with matched/unmatched disturbances," Transactions of the Institute of Measurement and Control, vol. 40, no. 5, pp. 1417-1424, 2018. [DOI:10.1177/0142331216683773]
9. [9] J. A. González, A. Barreiro, S. Dormido, and A. Baños, "Nonlinear adaptive sliding mode control with fast non-overshooting responses and chattering avoidance," Journal of the Franklin Institute, vol. 354, no. 7, pp. 2788-2815, 2017. [DOI:10.1016/j.jfranklin.2017.01.025]
10. [10] X. Yu and O. Kaynak, "Sliding-mode control with soft computing: A survey," IEEE transactions on industrial electronics, vol. 56, no. 9, pp. 3275-3285, 2009. [DOI:10.1109/TIE.2009.2027531]
11. [11] I. M. Boiko, "Chattering in sliding mode control systems with boundary layer approximation of discontinuous control," International Journal of Systems Science, vol. 44, no. 6, pp. 1126-1133, 2013. [DOI:10.1080/00207721.2011.652233]
12. [12] G. Bartolini, A. Pisano, E. Punta, and E. Usai, "A survey of applications of second-order sliding mode control to mechanical systems," International Journal of control, vol. 76, no. 9-10, pp. 875-892, 2003. [DOI:10.1080/0020717031000099010]
13. [13] K. D. Young, V. I. Utkin, and U. Ozguner, "A control engineer's guide to sliding mode control," IEEE transactions on control systems technology, vol. 7, no. 3, pp. 328-342, 1999. [DOI:10.1109/87.761053]
14. [14] Y. Feng, F. Han, and X. Yu, "Chattering free full-order sliding-mode control," Automatica, vol. 50, no. 4, pp. 1310-1314, 2014. [DOI:10.1016/j.automatica.2014.01.004]
15. [15] S. Mobayen, "Finite‐time stabilization of a class of chaotic systems with matched and unmatched uncertainties: An LMI approach," Complexity, vol. 21, no. 5, pp. 14-19, 2016. [DOI:10.1002/cplx.21624]
16. [16] S. Mobayen, D. Baleanu, and F. Tchier, "Second-order fast terminal sliding mode control design based on LMI for a class of non-linear uncertain systems and its application to chaotic systems," Journal of Vibration and Control, vol. 23, no. 18, pp. 2912-2925, 2017. [DOI:10.1177/1077546315623887]
17. [17] D. Zhao, S. Li, and F. Gao, "Finite time position synchronised control for parallel manipulators using fast terminal sliding mode," International Journal of Systems Science, vol. 40, no. 8, pp. 829-843, 2009. [DOI:10.1080/00207720902961022]
18. [18] S. Mobayen, "Finite-time robust-tracking and model-following controller for uncertain dynamical systems," Journal of Vibration and Control, vol. 22, no. 4, pp. 1117-1127, 2016. [DOI:10.1177/1077546314538991]
19. [19] A. Modirrousta and M. Khodabandeh, "Adaptive non-singular terminal sliding mode controller: new design for full control of the quadrotor with external disturbances," Transactions of the Institute of Measurement and Control, vol. 39, no. 3, pp. 371-383, 2017. [DOI:10.1177/0142331215611210]
20. [20] A. Al-Ghanimi, J. Zheng, and Z. Man, "A fast non-singular terminal sliding mode control based on perturbation estimation for piezoelectric actuators systems," International Journal of Control, vol. 90, no. 3, pp. 480-491, 2017. [DOI:10.1080/00207179.2016.1185157]
21. [21] H. Komurcugil, "Non-singular terminal sliding-mode control of DC-DC buck converters," Control Engineering Practice, vol. 21, no. 3, pp. 321-332, 2013. [DOI:10.1016/j.conengprac.2012.11.006]
22. [22] T. Madani, B. Daachi, and K. Djouani, "Non-singular terminal sliding mode controller: Application to an actuated exoskeleton," Mechatronics, vol. 33, pp. 136-145, 2016. [DOI:10.1016/j.mechatronics.2015.10.012]
23. [23] L. Peng, M. Jianjun, G. Lina, and Z. Zhiqiang, "Integral terminal sliding mode control for uncertain nonlinear systems," in 2015 34th Chinese Control Conference (CCC), 2015, pp. 824-828: IEEE. [DOI:10.1109/ChiCC.2015.7259740]
24. [24] S. Wen, M. Z. Chen, Z. Zeng, X. Yu, and T. Huang, "Fuzzy control for uncertain vehicle active suspension systems via dynamic sliding-mode approach," IEEE Transactions on Systems, Man, and Cybernetics: Systems, vol. 47, no. 1, pp. 24-32, 2016. [DOI:10.1109/TSMC.2016.2564930]
25. [25] X. Lu, X. Zhang, G. Zhang, J. Fan, and S. Jia, "Neural network adaptive sliding mode control for omnidirectional vehicle with uncertainties," ISA transactions, vol. 86, pp. 201-214, 2019. [DOI:10.1016/j.isatra.2018.10.043]
26. [26] O. Mofid and S. Mobayen, "Adaptive sliding mode control for finite-time stability of quad-rotor UAVs with parametric uncertainties," ISA transactions, vol. 72, pp. 1-14, 2018. [DOI:10.1016/j.isatra.2017.11.010]
27. [27] J. Mohammadpour and K. M. Grigoriadis, Efficient modeling and control of large-scale systems. Springer Science & Business Media, 2010. [DOI:10.1007/978-1-4419-5757-3]
28. [28] H. Huerta, A. G. Loukianov, and J. M. Cañedo, "Decentralized sliding mode block control of multimachine power systems," International journal of electrical power & energy systems, vol. 32, no. 1, pp. 1-11, 2010. [DOI:10.1016/j.ijepes.2009.06.016]
29. [29] G. Rinaldi, P. P. Menon, C. Edwards, and A. Ferrara, "Design and Validation of a Distributed Observer-Based Estimation Scheme for Power Grids," IEEE Transactions on Control Systems Technology, 2018.
30. [30] X.-G. Yan, S. K. Spurgeon, and C. Edwards, "Decentralized output feedback sliding mode control of nonlinear large-scale systems with uncertainties," Journal of optimization theory and applications, vol. 119, no. 3, pp. 597-614, 2003. [DOI:10.1023/B:JOTA.0000006691.37149.0b]
31. [31] F. Dörfler, J. W. Simpson-Porco, and F. Bullo, "Breaking the hierarchy: Distributed control and economic optimality in microgrids," IEEE Transactions on Control of Network Systems, vol. 3, no. 3, pp. 241-253, 2015. [DOI:10.1109/TCNS.2015.2459391]
32. [32] D. Chen and D. E. Seborg, "Design of decentralized PI control systems based on Nyquist stability analysis," Journal of Process Control, vol. 13, no. 1, pp. 27-39, 2003. [DOI:10.1016/S0959-1524(02)00021-5]
33. [33] X. Du, Y. Xi, and S. Li, "Distributed model predictive control for large-scale systems," in Proceedings of the 2001 American Control Conference.(Cat. No. 01CH37148), 2001, vol. 4, pp. 3142-3143: IEEE.
34. [34] Y. Fan, W. Wang, X. Jiang, and Z. Li, "Decentralized fuzzy linguistic control of multiple robotic manipulators with guaranteed global stability," Interaction Studies, vol. 20, no. 1, pp. 185-204, 2019. [DOI:10.1075/is.18008.fan]
35. [35] H. Sun, L. Hou, G. Zong, and X. Yu, "Adaptive Decentralized Neural Network Tracking Control for Uncertain Interconnected Nonlinear Systems With Input Quantization and Time Delay," IEEE transactions on neural networks and learning systems, 2019. [DOI:10.1109/TNNLS.2019.2919697]
36. [36] C. Liu, B. Jiang, R. J. Patton, and K. Zhang, "Decentralized Output Sliding-Mode Fault-Tolerant Control for Heterogeneous Multiagent Systems," IEEE transactions on cybernetics, 2019. [DOI:10.1109/TCYB.2019.2912636]
37. [37] A. Sabanovic, "Variable structure systems with sliding modes in motion control-A survey," IEEE Transactions on Industrial Informatics, vol. 7, no. 2, pp. 212-223, 2011. [DOI:10.1109/TII.2011.2123907]
38. [38] X. Li, M. Z. Chen, and H. Su, "Finite-time consensus of second-order multi-agent systems via a structural approach," Journal of the Franklin Institute, vol. 353, no. 15, pp. 3876-3896, 2016. [DOI:10.1016/j.jfranklin.2016.07.010]
39. [39] S. P. Bhat and D. S. Bernstein, "Geometric homogeneity with applications to finite-time stability," Mathematics of Control, Signals and Systems, vol. 17, no. 2, pp. 101-127, 2005. [DOI:10.1007/s00498-005-0151-x]
40. [40] P. A. Ioannou and J. Sun, Robust adaptive control. Courier Corporation, 2012.
41. [41] G. Rinaldi, P. P. Menon, C. Edwards, and A. Ferrara, "Variable Gains Decentralized Super-Twisting Sliding Mode Controllers for Large-Scale Modular Systems," in 2019 18th European Control Conference (ECC), 2019, pp. 3577-3582: IEEE. [DOI:10.23919/ECC.2019.8795810]
42. [42] B. C. Gruenwald, E. Arabi, T. Yucelen, A. Chakravarthy, and D. McNeely, "A decentralized adaptive control architecture for large-scale active-passive modular systems," in 2017 American Control Conference (ACC), 2017, pp. 3347-3352: IEEE. [DOI:10.23919/ACC.2017.7963464]
43. [43] S. J. Yoo, J. B. Park, and Y. H. Choi, "Decentralized adaptive stabilization of interconnected nonlinear systems with unknown non-symmetric dead-zone inputs," Automatica, vol. 45, no. 2, pp. 436-443, 2009. [DOI:10.1016/j.automatica.2008.07.019]

Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.