دوره 15، شماره 3 - ( مجله کنترل، جلد 15، شماره 3، پاییز 1400 )                   جلد 15 شماره 3,1400 صفحات 54-47 | برگشت به فهرست نسخه ها

XML English Abstract Print


1- دانشکده مهندسی برق، گروه کنترل، دانشگاه صنعتی مالک اشتر
چکیده:   (2111 مشاهده)

در این مقاله، الگوریتم نوینی برای افزایش دقت قیود نهایی مسئله کنترل پیش‌بین ارایه شده است. در این الگوریتم، با استخراج روابط ریاضی، قیود نهایی از لحظه نهایی به لحظات جاری انتقال یافته و در هر تکرار این انتقال در مسئله بهینه‌سازی صورت می‌گیرد. در هر لحظه از بهینه‌سازی، یک عبارت جدید بر حسب ورودی‌های کنترل در هر یک از افق‌های محدود کنترل پیش‌بین بدست می‌آید. معادله این قید انتقالی، بر اساس معادلات گسسته متغیر با زمان فرایند تحت کنترل استخراج شده و اجرای آن در هر لحظه، قیود نهایی مسئله را محقق می‌کند. این الگوریتم جدید پس از استخراج روابط ریاضی آن برای ردیابی مسیر یک ربات با قیود نهایی بکار رفته و کارایی آن با استفاده از شبیه‌سازی دینامیک ربات نشان داده شده است. همچنین تحلیل پایداری کنترل کننده پیشنهادی با نوشتن یک تابع هزینه مناسب و بکارگیری قضیه لیاپانف صورت گرفته است.

متن کامل [PDF 681 kb]   (127 دریافت)    
نوع مطالعه: كاربردي | موضوع مقاله: تخصصي
دریافت: 1398/11/12 | پذیرش: 1400/3/2 | انتشار الکترونیک پیش از انتشار نهایی: 1400/3/22

فهرست منابع
1. [1] B. A. Conway, Spacecraft trajectory optimization. Cambridge University Press, 2010. [DOI:10.1017/CBO9780511778025]
2. [2] A. V. Rao, "Trajectory optimization: a survey," in Optimization and optimal control in automotive systems: Springer, 2014, pp. 3-21. [DOI:10.1007/978-3-319-05371-4_1]
3. [3] S. N. Ha, "A nonlinear shooting method for two-point boundary value problems," Computers & Mathematics with Applications, vol. 42, no. 10-11, pp. 1411-1420, 2001. [DOI:10.1016/S0898-1221(01)00250-4]
4. [4] R. W. Holsapple, "A modified simple shooting method for solving two-point boundary value problems", Texas Tech University, 2003.
5. [5] M. A. Patterson and A. V. Rao, "GPOPS-II: A MATLAB software for solving multiple-phase optimal control problems using hp-adaptive Gaussian quadrature collocation methods and sparse nonlinear programming," ACM Transactions on Mathematical Software (TOMS), vol. 41, no. 1, pp. 1-37, 2014, doi: 10.1145/2558904. [DOI:10.1145/2558904]
6. [6] W. Roh and Y. Kim, "Trajectory optimization for a multi-stage launch vehicle using time finite element and direct collocation methods," Engineering optimization, vol. 34, no. 1, pp. 15-32, 2002. [DOI:10.1080/03052150210912]
7. [7] F. Liu, T. Chao, S. Wang, and M. Yang, "Trajectory optimization for launch vehicle boost phase based on Gauss Pseudospectral Method," in 2016 35th Chinese Control Conference (CCC), 2016: IEEE, pp. 10910-10914. [DOI:10.1109/ChiCC.2016.7555082]
8. [8] Z. Wang and Z. Wu, "Six-DOF trajectory optimization for reusable launch vehicles via Gauss Pseudospectral method", Journal of Systems Engineering and Electronics, vol. 27, no. 2, pp. 434-441, 2016. [DOI:10.1109/JSEE.2016.00044]
9. [9] R. Padhi and M. Kothari, "Model predictive static programming: a computationally efficient technique for suboptimal control design," International journal of innovative computing, information and control, vol. 5, no. 2, pp. 399-411, 2009.
10. [10] f. Tavakkoli and A. Novinzadeh, "closed loop suboptimal guidance design for satellite launch vehicle(in Persian)," Journal of Modarres Mechanical Engineering, vol. 17, no. 9, pp. 97-106, 1396.
11. [11] G. Klančar and I. Škrjanc, "Tracking-error model-based predictive control for mobile robots in real time," Robotics and autonomous systems, vol. 55, no. 6, pp. 460-469, 2007. [DOI:10.1016/j.robot.2007.01.002]
12. [12] H. Yang, M. Guo, Y. Xia, and L. Cheng, "Trajectory tracking for wheeled mobile robots via model predictive control with softening constraints," IET Control Theory & Applications, vol. 12, no. 2, pp. 206-214, 2017. [DOI:10.1049/iet-cta.2017.0395]
13. [13] J. A. Primbs, "The analysis of optimization based controllers," Automatica, vol. 37, no. 6, pp. 933-938, 2001. [DOI:10.1016/S0005-1098(01)00036-X]
14. [14] L. Grüne, "Economic receding horizon control without terminal constraints," Automatica, vol. 49, no. 3, pp. 725-734, 2013. [DOI:10.1016/j.automatica.2012.12.003]
15. [15] H. Michalska and D. Q. Mayne, "Robust receding horizon control of constrained nonlinear systems," IEEE transactions on automatic control, vol. 38, no. 11, pp. 1623-1633, 1993. [DOI:10.1109/9.262032]
16. [16] M. Tanaskovic, L. Fagiano, R. Smith, and M. Morari, "Adaptive receding horizon control for constrained MIMO systems," Automatica, vol. 50, no. 12, pp. 3019-3029, 2014. [DOI:10.1016/j.automatica.2014.10.036]
17. [17] T. A. Johansen, "Approximate explicit receding horizon control of constrained nonlinear systems," Automatica, vol. 40, no. 2, pp. 293-300, 2004. [DOI:10.1016/j.automatica.2003.09.021]
18. [18] V. T. Minh and N. Afzulpurkar, "Robust model predictive control for input saturated and softened state constraints," Asian Journal of Control, vol. 7, no. 3, pp. 319-325, 2005. [DOI:10.1111/j.1934-6093.2005.tb00241.x]
19. [19] Y. I. Lee and B. Kouvaritakis, "Robust receding horizon predictive control for systems with uncertain dynamics and input saturation," Automatica, vol. 36, no. 10, pp. 1497-1504, 2000. [DOI:10.1016/S0005-1098(00)00064-9]
20. [20] W. H. Kwon and S. H. Han, Receding horizon control: model predictive control for state models. Springer Science & Business Media, 2006.
21. [21] N. O. Ghahramani and F. Towhidkhah, "Constrained incremental predictive controller design for a flexible joint robot," ISA transactions, vol. 48, no. 3, pp. 321-326, 2009. [DOI:10.1016/j.isatra.2009.01.010]
22. [22] R. Padhi, "Model predictive static programming: A promising technique for optimal missile guidance," To appear in Annals of Indian National Academy of Engineering (INAE), 2008.
23. [23] P. Kumar and R. Padhi, "Extension of model predictive static programming for reference command tracking," IFAC Proceedings Volumes, vol. 47, no. 1, pp. 855-861, 2014. [DOI:10.3182/20140313-3-IN-3024.00174]
24. [24] S. Blažič, "A novel trajectory-tracking control law for wheeled mobile robots," Robotics and Autonomous Systems, vol. 59, no. 11, pp. 1001-1007, 2011. [DOI:10.1016/j.robot.2011.06.005]
25. [25] F. Künhe, J. Gomes, and W. Fetter, "Mobile robot trajectory tracking using model predictive control," in II IEEE Latin-American robotics symposium, 2005, vol. 51: Citeseer.
26. [26] V. Nevistić and J. A. Primbs, "Finite receding horizon linear quadratic control: A unifying theory for stability and performance analysis," 1997.
27. [27] J. A. Primbs and V. Nevistić, "Constrained finite receding horizon linear quadratic control," in "Technical Report CIT-CDS," California Institute of Technology, 1997.
28. [28] M. Morari and J. H. Lee, "Model predictive control: past, present and future," Computers & Chemical Engineering, vol. 23, no. 4-5, pp. 667-682, 1999. [DOI:10.1016/S0098-1354(98)00301-9]
29. [29] W. Kwon and A. Pearson, "A modified quadratic cost problem and feedback stabilization of a linear system," IEEE Transactions on Automatic Control, vol. 22, no. 5, pp. 838-842, 1977. [DOI:10.1109/TAC.1977.1101619]
30. [30] J. B. Rawlings and K. R. Muske, "The stability of constrained receding horizon control," IEEE transactions on automatic control, vol. 38, no. 10, pp. 1512-1516, 1993. [DOI:10.1109/9.241565]

بازنشر اطلاعات
Creative Commons License این مقاله تحت شرایط Creative Commons Attribution-NonCommercial 4.0 International License قابل بازنشر است.