1. [1] F. E. Mustafa, I. Ahmed, A. Basit, S. H. Malik, A. Mahmood, P. R. Ali, et al., "A review on effective alarm management systems for industrial process control: barriers and opportunities," International Journal of Critical Infrastructure Protection, p.100599, 2023. [
DOI:10.1016/j.ijcip.2023.100599]
2. [2] J. Wang, F. Yang, T. Chen, and S. L. Shah, "An overview of industrial alarm systems: Main causes for alarm overloading, research status, and open problems," IEEE Transactions on Automation Science and Engineering, vol.13, no.2, pp.1045-1061, 2015. [
DOI:10.1109/TASE.2015.2464234]
3. [3] I.Izadi, S. L. Shah, D. S. Shook, and T. Chen, "An introduction to alarm analysis and design," IFAC-PapersOnLine, vol.42, no.8, pp.645-650, 2009. [
DOI:10.3182/20090630-4-ES-2003.00107]
4. [4] ISA. Management of Alarm Systems for the Process Industries. International Society of Automation, 2009.
5. [5] J. Xu, J. Wang, I. Izadi, and T. Chen, "Performance assessment and design for univariate alarm systems based on FAR, MAR, and AAD," IEEE Transactions on Automation Science and Engineering, vol.9, no.2, pp.296-307, 2011. [
DOI:10.1109/TASE.2011.2176490]
6. [6] B. R. Hollifield and E. Habibi. Alarm management: A comprehensive guide: Practical and proven methods to optimize the performance of alarm management systems. ISA, 2011.
7. [7] H. S. Alinezhad, M. H. Roohi, and T. Chen, "A review of alarm root cause analysis in process industries: Common methods, recent research status and challenges," Chemical Engineering Research and Design, 2022. [
DOI:10.1016/j.cherd.2022.10.041]
8. [8] D. H. Rothenberg. Alarm Management for Process Control: a Best-practice Guide for Design, Implementation, and Use of Industrial Alarm Systems. Momentum Press, 2009.
9. [9] EEMUA. Alarm Systems-A Guide to Design, Management and Procurement, vol.191. EEMUA Publication, 2013.
10. [10] B. Zhou. Advanced Methods for Alarm Monitoring and Alarm Flood Analysis Based on Industrial Data. University of Alberta, 2021.
11. [11] A.Tulsyan and R. B. Gopaluni, "Univariate model-based deadband alarm design for nonlinear processes," Industrial & Engineering Chemistry Research, vol.58, no.26, pp.11295-11302, 2019. [
DOI:10.1021/acs.iecr.9b00014]
12. [12] M. S. Afzal, T. Chen, A. Bandehkhoda, and I. Izadi, "Analysis and design of time- deadbands for univariate alarm systems," Control Engineering Practice, vol.71, pp.96- 107, 2018. [
DOI:10.1016/j.conengprac.2017.10.016]
13. [13] N. A. Adnan, I. Izadi, and T. Chen, "On expected detection delays for alarm systems with deadbands and delay-timers," Journal of Process Control, vol.21, no.9, pp.1318-1331, 2011. [
DOI:10.1016/j.jprocont.2011.06.019]
14. [14] N. A. Adnan, Y. Cheng, I. Izadi, and T. Chen, "Study of generalized delay-timers in alarm configuration," Journal of Process Control, vol.23, no.3, pp.382-395, 2013. [
DOI:10.1016/j.jprocont.2012.12.013]
15. [15] Y. Cheng, I. Izadi, and T. Chen, "Optimal alarm signal processing: Filter design and performance analysis," IEEE Transactions on Automation Science and Engineering, vol.10, no.2, pp.446-451, 2013. [
DOI:10.1109/TASE.2012.2233472]
16. [16] M. H. Roohi and T. Chen, "Generalized moving variance filters for industrial alarm sys tems," Journal of Process Control, vol.95, pp.75-85, 2020. [
DOI:10.1016/j.jprocont.2020.10.001]
17. [17] M. H. Roohi and T. Chen, "Performance assessment and design of quadratic alarm filters," IFAC-PapersOnLine, vol.53, no.2, pp.494-499, 2020. [
DOI:10.1016/j.ifacol.2020.12.267]
18. [18] M. H. Roohi, T. Chen, and I. Izadi, "Control and alarm interplay and robust state-feedback synthesis with an alarm performance constraint," Industrial & Engineering Chemistry Re- search, vol.59, no.38, pp.16708-16719, 2020. [
DOI:10.1021/acs.iecr.0c02717]
19. [19] M. H. Roohi, T. Chen, Z. Guan, and T. Yamamoto, "A new approach to design alarm filters using the plant and controller knowledge," Industrial & Engineering Chemistry Research, vol.60, no.9, pp.3648-3657, 2021. [
DOI:10.1021/acs.iecr.0c05523]
20. [20] V. Rodrigo, M. Chioua, T. Hagglund, and M. Hollender, "Causal analysis for alarm flood reduction," IFAC-PapersOnLine, vol.49, no.7, pp.723-728, 2016. [
DOI:10.1016/j.ifacol.2016.07.269]
21. [21] T. Yuan and S. J. Qin, "Root cause diagnosis of plant-wide oscillations using granger causality," Journal of Process Control, vol.24, no.2, pp.450-459, 2014. [
DOI:10.1016/j.jprocont.2013.11.009]
22. [22] Q. Chen, X. Lang, S. Lu, N. ur Rehman, L. Xie, and H. Su, "Detection and root cause analysis of multiple plant-wide oscillations using multivariate nonlinear chirp mode de- composition and multivariate granger causality," Computers & Chemical Engineering, vol.147, p.107231, 2021. [
DOI:10.1016/j.compchemeng.2021.107231]
23. [23] P. Duan, F. Yang, T. Chen, and S. L. Shah, "Direct causality detection via the trans- fer entropy approach," IEEE Transactions on Control Systems Technology, vol.21, no.6, pp.2052-2066, 2013. [
DOI:10.1109/TCST.2012.2233476]
24. [24] Q.-Q. Meng, Q.-X. Zhu, H.-H. Gao, Y.-L. He, and Y. Xu, "A novel scoring function based on family transfer entropy for Bayesian networks learning and its application to industrial alarm systems," Journal of Process Control, vol.76, pp.122-132, 2019. [
DOI:10.1016/j.jprocont.2019.01.013]
25. [25] Q.-X. Zhu, W.-J. Ding, and Y.-L. He, "Novel multimodule Bayesian network with cyclic structures for root cause analysis: Application to complex chemical processes," Industrial & Engineering Chemistry Research, vol.59, no.28, pp.12812-12821, 2020. [
DOI:10.1021/acs.iecr.0c01710]
26. [26] M. H. Roohi, P. Ramazi, and T. Chen, "Towards accurate root-alarm identification: The causal Bayesian network approach," in International Conference on Control and Fault-Tolerant Systems, pp.169-174, IEEE, 2021. [
DOI:10.1109/SysTol52990.2021.9595698]
27. [27] H. S. Alinezhad, J. Shang, and T. Chen, "Open set online classification of industrial alarm floods with alarm ranking," IEEE Transactions on Instrumentation and Measurement, vol.72, pp.1-11, 2022. [
DOI:10.1109/TIM.2022.3232617]
28. [28] S. R. Kondaveeti, I. Izadi, S. L. Shah, T. Black, and T. Chen, "Graphical tools for routine assessment of industrial alarm systems," Computers & Chemical Engineering, vol.46, pp.39-47, 2012. [
DOI:10.1016/j.compchemeng.2012.06.042]
29. [29] K. Ahmed, I. Izadi, T. Chen, D. Joe, and T. Burton, "Similarity analysis of industrial alarm flood data," IEEE Transactions on Automation Science and Engineering, vol.10, no.2, pp.452-457, 2013. [
DOI:10.1109/TASE.2012.2230627]
30. [30] W. Hu, A. W. Al-Dabbagh, T. Chen, and S. L. Shah, "Design of visualization plots of industrial alarm and event data for enhanced alarm management," Control Engineering Practice, vol.79, pp.50-64, 2018. [
DOI:10.1016/j.conengprac.2018.07.005]
31. [31] Z. Mannani, I. Izadi, and N. Ghadiri, "Preprocessing of alarm data for data mining," Industrial & Engineering Chemistry Research, vol.58, no.26, pp.11261-11274, 2019. [
DOI:10.1021/acs.iecr.8b05955]
32. [32] T. Niyazmand and I. Izadi, "Identification and clustering of alarm floods in a natural gas processing plant," in Iranian Conference on Electrical Engineering, pp.656- 660, IEEE, 2017. [
DOI:10.1109/IranianCEE.2017.7985121]
33. [33] M. Lucke, M. Chioua, C. Grimholt, M. Hollender, and N. F. Thornhill, "Online alarm flood classification using alarm coactivations," IFAC-PapersOnLine, vol.51, no.18, pp.345-350, 2018. [
DOI:10.1016/j.ifacol.2018.09.324]
34. [34] C. Tian, P. Song, C. Zhao, and J. Ding, "Structure feature extraction for hierarchical alarm flood classification and alarm prediction," IEEE Transactions on Automation Science and Engineering, 2023. [
DOI:10.1109/TASE.2023.3290256]
35. [35] T. F. Smith, M. S. Waterman, et al., "Identification of common molecular subsequences," Journal of Molecular Biology, vol.147, no.1, pp.195-197, 1981. [
DOI:10.1016/0022-2836(81)90087-5]
36. [36] Y. Cheng, I. Izadi, and T. Chen, "Pattern matching of alarm flood sequences by a modified smith-waterman algorithm," Chemical Engineering Research and Design, vol.91, no.6, pp.1085-1094, 2013. [
DOI:10.1016/j.cherd.2012.11.001]
37. [37] S. Lai and T. Chen, "Methodology and application of pattern mining in multiple alarm flood sequences," IFAC-PapersOnLine, vol.48, no.8, pp.657-662, 2015. [
DOI:10.1016/j.ifacol.2015.09.043]
38. [38] S. Lai, F. Yang, and T. Chen, "Online pattern matching and prediction of incoming alarm floods," Journal of Process Control, vol.56, pp.69-78, 2017. [
DOI:10.1016/j.jprocont.2017.01.003]
39. [39] B. Zhou, W. Hu, K. Brown, and T. Chen, "Generalized pattern matching of industrial alarm flood sequences via word processing and sequence alignment," IEEE Transactions on Industrial Electronics, vol.68, no.10, pp.10171-10179, 2020. [
DOI:10.1109/TIE.2020.3026287]
40. [40] C. Li, Y. Tu, S. Gu, Y. Zheng, X. Yang, C. Li, Y. Ke, and J. Hu, "Pattern matching of alarm sequences by using an improved smith-waterman algorithm," in International Conference on Electronics and Communication; Network and Computer Technology, vol.12167, pp.723-728, SPIE, 2022.
41. [41] S. B. Needleman and C. D. Wunsch, "A general method applicable to the search for simi larities in the amino acid sequence of two proteins," Journal of Molecular Biology, vol.48, no.3, pp.443-453, 1970. [
DOI:10.1016/0022-2836(70)90057-4]
42. [42] S. Charbonnier, N. Bouchair, and P. Gayet, "Fault template extraction to assist operators during industrial alarm floods," Engineering Applications of Artificial Intelligence, vol.50, pp.32-44, 2016. [
DOI:10.1016/j.engappai.2015.12.007]
43. [43] M. R. Parvez, W. Hu, and T. Chen, "Comparison of the smith-waterman and Needleman- Wunsch algorithms for online similarity analysis of industrial alarm floods," in IEEE Electric Power and Energy Conference, pp.1-6, IEEE, 2020. [
DOI:10.1109/EPEC48502.2020.9320080]
44. [44] J. Shang and T. Chen, "Early classification of alarm floods via exponentially attenuated component analysis," IEEE Transactions on Industrial Electronics, vol.67, no.10, pp.8702-8712, 2019. [
DOI:10.1109/TIE.2019.2949542]
45. [45] H. S. Alinezhad, J. Shang, and T. Chen, "Early classification of industrial alarm floods based on semi-supervised learning," IEEE Transactions on Industrial Informatics, vol.18, no.3, pp.1845-1853, 2021. [
DOI:10.1109/TII.2021.3081417]
46. [46] S. F. Altschul, W. Gish, W. Miller, E. W. Myers, and D. J. Lipman, "Basic local alignment search tool," Journal of Molecular Biology, vol.215, no.3, pp.403-410, 1990. [
DOI:10.1016/S0022-2836(05)80360-2]
47. [47] W. Hu, J. Wang, and T. Chen, "A local alignment approach to similarity analysis of industrial alarm flood sequences," Control Engineering Practice, vol.55, pp.13-25, 2016. [
DOI:10.1016/j.conengprac.2016.05.021]
48. [48] Y. Xu, W. Tan, and T. Li, "An alarm flood pattern matching algorithm based on modified blast with Leveshtein distance," in International Conference on Control, Automation, Robotics and Vision, pp.1-6, IEEE, 2016. [
DOI:10.1109/ICARCV.2016.7838817]
49. [49] J. Han, J. Pei, B. Mortazavi-Asl, H. Pinto, Q. Chen, U. Dayal, and M. Hsu, "Prefixspan: Mining sequential patterns efficiently by prefix-projected pattern growth," in Inter- national Conference on Data Engineering, pp.215-224, IEEE, 2001.
50. [50] T. Niyazmand and I. Izadi, "Pattern mining in alarm flood sequences using a modified Prefixspan algorithm," ISA Transactions, vol.90, pp.287-293, 2019. [
DOI:10.1016/j.isatra.2018.12.050]
51. [51] J. Wang, R. Jia, J. Zhou, and M. Zhou, "Mining sequential alarm pattern based on the incremental causality Prefixspan algorithm," IEEE Transactions on Artificial Intelligence, 2022. [
DOI:10.1109/TAI.2022.3156052]
52. [52] Q.-X. Zhu, C. Jin, Y.-L. He, and Y. Xu, "Pattern mining of alarm flood sequences using an improved Prefixspan algorithm with tolerance to short-term order ambiguity," Industrial & Engineering Chemistry Research, vol.60, no.11, pp.4375-4384, 2021. [
DOI:10.1021/acs.iecr.0c05618]
53. [53] S. Yang, T. Zhang, Y. Zhai, K. Wang, G. Zhao, Y. Tu, and L. Cheng, "Frequent alarm pattern mining of industrial alarm flood sequences by an improved Prefixspan algorithm," Processes, vol.11, no.4, p.1169, 2023. [
DOI:10.3390/pr11041169]
54. [54] W. Hu, Z. Wang, and J. Wang, "A priority-aware sequential pattern mining method for detection of compact patterns from alarm floods," Journal of Process Control, vol.129, p.103041, 2023. [
DOI:10.1016/j.jprocont.2023.103041]
55. [55] Z. Wang, W. Hu, W. Cao, and M. Wu, "Detection of sequential alarm patterns in complex industrial facilities using clasp and top-k algorithms," in Chinese Control Conference, pp.4671-4676, IEEE, 2021. [
DOI:10.23919/CCC52363.2021.9549705]
56. [56] C. Belavadi, V. S. Sardar, and S. S. Chaudhari, "Alarm pattern recognition in continuous process control systems using data mining," International Journal of Computing, vol.21, no.3, pp.333-341, 2022. [
DOI:10.47839/ijc.21.3.2689]
57. [57] J. Wang and J. Han, "Bide: Efficient mining of frequent closed sequences," in International Conference on Data Engineering, pp.79-90, IEEE, 2004.
58. [58] B. Zhou, W. Hu, and T. Chen, "Pattern extraction from industrial alarm flood sequences by a modified Clofast algorithm," IEEE Transactions on Industrial Informatics, vol.18, no.1, pp.288-296, 2021. [
DOI:10.1109/TII.2021.3071361]
59. [59] F. Fumarola, P. F. Lanotte, M. Ceci, and D. Malerba, "Clofast: closed sequential pattern mining using sparse and vertical id-lists," Knowledge and Information Systems, vol.48, pp.429-463, 2016. [
DOI:10.1007/s10115-015-0884-x]
60. [60] M. R. Parvez, W. Hu, and T. Chen, "Real-time pattern matching and ranking for early prediction of industrial alarm floods," Control Engineering Practice, vol.120, p.105004, 2022. [
DOI:10.1016/j.conengprac.2021.105004]
61. [61] X. Rong, "word2vec parameter learning explained," arXiv preprint arXiv:1411.2738, 2014.
62. [62] S. Cai, L. Zhang, A. Palazoglu, and J. Hu, "Clustering analysis of process alarms using word embedding," Journal of Process Control, vol.83, pp.11-19, 2019. [
DOI:10.1016/j.jprocont.2019.08.011]
63. [63] H. S. Alinezhad, J. Shang, and T. Chen, "A modified bag-of-words representation for industrial alarm floods," in International Symposium on Advanced Control of Industrial Processes, pp.331-336, IEEE, 2022. [
DOI:10.1109/AdCONIP55568.2022.9894226]
64. [64] X. Zhang, W. Hu, A. W. Al-Dabbagh, and W. Cao, "Similarity analysis of industrial alarm floods based on word embedding and move-split-merge distance," in International Conference on Industrial Cyber-Physical Systems, pp.1-6, IEEE, 2023. [
DOI:10.1109/ICPS58381.2023.10128020]
65. [65] W. Hu, X. Zhang, J. Wang, G. Yang, and Y. Cai, "Pattern matching of industrial alarm floods using word embedding and dynamic time warping," Journal of Automatica Sinica, vol.10, no.4, pp.1096-1098, 2023. [
DOI:10.1109/JAS.2023.123594]
66. [66] H. Khaleghy and I. Izadi, "Detection of correlated alarms using graph embedding," in International Conference on Signal Processing and Intelligent Systems, pp.1-7, IEEE, 2021. [
DOI:10.1109/ICSPIS54653.2021.9729368]
67. [67] Grover and J. Leskovec, "Node2vec: Scalable feature learning for networks," in ACM International Conference on Knowledge Discovery and Data Mining, pp.855-864, 2016. [
DOI:10.1145/2939672.2939754]