Volume 17, Issue 2 (Journal of Control, V.17, N.2 Summer 2023)                   JoC 2023, 17(2): 113-127 | Back to browse issues page

XML Persian Abstract Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Roohi M H, Izadi I. A review of alarm flood analysis methods in industrial processes: pattern recognition and similarity analysis. JoC 2023; 17 (2) :113-127
URL: http://joc.kntu.ac.ir/article-1-1005-en.html
1- Isfahan University of Technology
Abstract:   (1852 Views)
In this paper, recently proposed methods of pattern recognition and similarity analysis in alarm management systems are reviewed, and the impact of these methods on improving the efficiency of these systems, with emphasis on alarm floods, is discussed. Various types of alarms and their patterns are analyzed, highlighting the potential for more precise predictions, timely response strategies, and improvements in system maintenance. The technological advancements that have strengthened these methods are explained. More specifically, the role of recent advancements in artificial intelligence and machine learning in enhancing pattern recognition and similarity analysis, especially during alarm floods, is studied. The combination of these modern technologies with traditional alarm management systems paves the way for significant improvements in industrial safety. Examples from various industries are provided to demonstrate the practical application and impact of these methods.
Full-Text [PDF 750 kb]   (471 Downloads)    
Type of Article: Research paper | Subject: New approaches in control engineering
Received: 2023/08/27 | Accepted: 2023/09/11 | ePublished ahead of print: 2023/09/17 | Published: 2023/09/21

References
1. [1] F. E. Mustafa, I. Ahmed, A. Basit, S. H. Malik, A. Mahmood, P. R. Ali, et al., "A review on effective alarm management systems for industrial process control: barriers and opportunities," International Journal of Critical Infrastructure Protection, p.100599, 2023. [DOI:10.1016/j.ijcip.2023.100599]
2. [2] J. Wang, F. Yang, T. Chen, and S. L. Shah, "An overview of industrial alarm systems: Main causes for alarm overloading, research status, and open problems," IEEE Transactions on Automation Science and Engineering, vol.13, no.2, pp.1045-1061, 2015. [DOI:10.1109/TASE.2015.2464234]
3. [3] I.Izadi, S. L. Shah, D. S. Shook, and T. Chen, "An introduction to alarm analysis and design," IFAC-PapersOnLine, vol.42, no.8, pp.645-650, 2009. [DOI:10.3182/20090630-4-ES-2003.00107]
4. [4] ISA. Management of Alarm Systems for the Process Industries. International Society of Automation, 2009.
5. [5] J. Xu, J. Wang, I. Izadi, and T. Chen, "Performance assessment and design for univariate alarm systems based on FAR, MAR, and AAD," IEEE Transactions on Automation Science and Engineering, vol.9, no.2, pp.296-307, 2011. [DOI:10.1109/TASE.2011.2176490]
6. [6] B. R. Hollifield and E. Habibi. Alarm management: A comprehensive guide: Practical and proven methods to optimize the performance of alarm management systems. ISA, 2011.
7. [7] H. S. Alinezhad, M. H. Roohi, and T. Chen, "A review of alarm root cause analysis in process industries: Common methods, recent research status and challenges," Chemical Engineering Research and Design, 2022. [DOI:10.1016/j.cherd.2022.10.041]
8. [8] D. H. Rothenberg. Alarm Management for Process Control: a Best-practice Guide for Design, Implementation, and Use of Industrial Alarm Systems. Momentum Press, 2009.
9. [9] EEMUA. Alarm Systems-A Guide to Design, Management and Procurement, vol.191. EEMUA Publication, 2013.
10. [10] B. Zhou. Advanced Methods for Alarm Monitoring and Alarm Flood Analysis Based on Industrial Data. University of Alberta, 2021.
11. [11] A.Tulsyan and R. B. Gopaluni, "Univariate model-based deadband alarm design for nonlinear processes," Industrial & Engineering Chemistry Research, vol.58, no.26, pp.11295-11302, 2019. [DOI:10.1021/acs.iecr.9b00014]
12. [12] M. S. Afzal, T. Chen, A. Bandehkhoda, and I. Izadi, "Analysis and design of time- deadbands for univariate alarm systems," Control Engineering Practice, vol.71, pp.96- 107, 2018. [DOI:10.1016/j.conengprac.2017.10.016]
13. [13] N. A. Adnan, I. Izadi, and T. Chen, "On expected detection delays for alarm systems with deadbands and delay-timers," Journal of Process Control, vol.21, no.9, pp.1318-1331, 2011. [DOI:10.1016/j.jprocont.2011.06.019]
14. [14] N. A. Adnan, Y. Cheng, I. Izadi, and T. Chen, "Study of generalized delay-timers in alarm configuration," Journal of Process Control, vol.23, no.3, pp.382-395, 2013. [DOI:10.1016/j.jprocont.2012.12.013]
15. [15] Y. Cheng, I. Izadi, and T. Chen, "Optimal alarm signal processing: Filter design and performance analysis," IEEE Transactions on Automation Science and Engineering, vol.10, no.2, pp.446-451, 2013. [DOI:10.1109/TASE.2012.2233472]
16. [16] M. H. Roohi and T. Chen, "Generalized moving variance filters for industrial alarm sys tems," Journal of Process Control, vol.95, pp.75-85, 2020. [DOI:10.1016/j.jprocont.2020.10.001]
17. [17] M. H. Roohi and T. Chen, "Performance assessment and design of quadratic alarm filters," IFAC-PapersOnLine, vol.53, no.2, pp.494-499, 2020. [DOI:10.1016/j.ifacol.2020.12.267]
18. [18] M. H. Roohi, T. Chen, and I. Izadi, "Control and alarm interplay and robust state-feedback synthesis with an alarm performance constraint," Industrial & Engineering Chemistry Re- search, vol.59, no.38, pp.16708-16719, 2020. [DOI:10.1021/acs.iecr.0c02717]
19. [19] M. H. Roohi, T. Chen, Z. Guan, and T. Yamamoto, "A new approach to design alarm filters using the plant and controller knowledge," Industrial & Engineering Chemistry Research, vol.60, no.9, pp.3648-3657, 2021. [DOI:10.1021/acs.iecr.0c05523]
20. [20] V. Rodrigo, M. Chioua, T. Hagglund, and M. Hollender, "Causal analysis for alarm flood reduction," IFAC-PapersOnLine, vol.49, no.7, pp.723-728, 2016. [DOI:10.1016/j.ifacol.2016.07.269]
21. [21] T. Yuan and S. J. Qin, "Root cause diagnosis of plant-wide oscillations using granger causality," Journal of Process Control, vol.24, no.2, pp.450-459, 2014. [DOI:10.1016/j.jprocont.2013.11.009]
22. [22] Q. Chen, X. Lang, S. Lu, N. ur Rehman, L. Xie, and H. Su, "Detection and root cause analysis of multiple plant-wide oscillations using multivariate nonlinear chirp mode de- composition and multivariate granger causality," Computers & Chemical Engineering, vol.147, p.107231, 2021. [DOI:10.1016/j.compchemeng.2021.107231]
23. [23] P. Duan, F. Yang, T. Chen, and S. L. Shah, "Direct causality detection via the trans- fer entropy approach," IEEE Transactions on Control Systems Technology, vol.21, no.6, pp.2052-2066, 2013. [DOI:10.1109/TCST.2012.2233476]
24. [24] Q.-Q. Meng, Q.-X. Zhu, H.-H. Gao, Y.-L. He, and Y. Xu, "A novel scoring function based on family transfer entropy for Bayesian networks learning and its application to industrial alarm systems," Journal of Process Control, vol.76, pp.122-132, 2019. [DOI:10.1016/j.jprocont.2019.01.013]
25. [25] Q.-X. Zhu, W.-J. Ding, and Y.-L. He, "Novel multimodule Bayesian network with cyclic structures for root cause analysis: Application to complex chemical processes," Industrial & Engineering Chemistry Research, vol.59, no.28, pp.12812-12821, 2020. [DOI:10.1021/acs.iecr.0c01710]
26. [26] M. H. Roohi, P. Ramazi, and T. Chen, "Towards accurate root-alarm identification: The causal Bayesian network approach," in International Conference on Control and Fault-Tolerant Systems, pp.169-174, IEEE, 2021. [DOI:10.1109/SysTol52990.2021.9595698]
27. [27] H. S. Alinezhad, J. Shang, and T. Chen, "Open set online classification of industrial alarm floods with alarm ranking," IEEE Transactions on Instrumentation and Measurement, vol.72, pp.1-11, 2022. [DOI:10.1109/TIM.2022.3232617]
28. [28] S. R. Kondaveeti, I. Izadi, S. L. Shah, T. Black, and T. Chen, "Graphical tools for routine assessment of industrial alarm systems," Computers & Chemical Engineering, vol.46, pp.39-47, 2012. [DOI:10.1016/j.compchemeng.2012.06.042]
29. [29] K. Ahmed, I. Izadi, T. Chen, D. Joe, and T. Burton, "Similarity analysis of industrial alarm flood data," IEEE Transactions on Automation Science and Engineering, vol.10, no.2, pp.452-457, 2013. [DOI:10.1109/TASE.2012.2230627]
30. [30] W. Hu, A. W. Al-Dabbagh, T. Chen, and S. L. Shah, "Design of visualization plots of industrial alarm and event data for enhanced alarm management," Control Engineering Practice, vol.79, pp.50-64, 2018. [DOI:10.1016/j.conengprac.2018.07.005]
31. [31] Z. Mannani, I. Izadi, and N. Ghadiri, "Preprocessing of alarm data for data mining," Industrial & Engineering Chemistry Research, vol.58, no.26, pp.11261-11274, 2019. [DOI:10.1021/acs.iecr.8b05955]
32. [32] T. Niyazmand and I. Izadi, "Identification and clustering of alarm floods in a natural gas processing plant," in Iranian Conference on Electrical Engineering, pp.656- 660, IEEE, 2017. [DOI:10.1109/IranianCEE.2017.7985121]
33. [33] M. Lucke, M. Chioua, C. Grimholt, M. Hollender, and N. F. Thornhill, "Online alarm flood classification using alarm coactivations," IFAC-PapersOnLine, vol.51, no.18, pp.345-350, 2018. [DOI:10.1016/j.ifacol.2018.09.324]
34. [34] C. Tian, P. Song, C. Zhao, and J. Ding, "Structure feature extraction for hierarchical alarm flood classification and alarm prediction," IEEE Transactions on Automation Science and Engineering, 2023. [DOI:10.1109/TASE.2023.3290256]
35. [35] T. F. Smith, M. S. Waterman, et al., "Identification of common molecular subsequences," Journal of Molecular Biology, vol.147, no.1, pp.195-197, 1981. [DOI:10.1016/0022-2836(81)90087-5]
36. [36] Y. Cheng, I. Izadi, and T. Chen, "Pattern matching of alarm flood sequences by a modified smith-waterman algorithm," Chemical Engineering Research and Design, vol.91, no.6, pp.1085-1094, 2013. [DOI:10.1016/j.cherd.2012.11.001]
37. [37] S. Lai and T. Chen, "Methodology and application of pattern mining in multiple alarm flood sequences," IFAC-PapersOnLine, vol.48, no.8, pp.657-662, 2015. [DOI:10.1016/j.ifacol.2015.09.043]
38. [38] S. Lai, F. Yang, and T. Chen, "Online pattern matching and prediction of incoming alarm floods," Journal of Process Control, vol.56, pp.69-78, 2017. [DOI:10.1016/j.jprocont.2017.01.003]
39. [39] B. Zhou, W. Hu, K. Brown, and T. Chen, "Generalized pattern matching of industrial alarm flood sequences via word processing and sequence alignment," IEEE Transactions on Industrial Electronics, vol.68, no.10, pp.10171-10179, 2020. [DOI:10.1109/TIE.2020.3026287]
40. [40] C. Li, Y. Tu, S. Gu, Y. Zheng, X. Yang, C. Li, Y. Ke, and J. Hu, "Pattern matching of alarm sequences by using an improved smith-waterman algorithm," in International Conference on Electronics and Communication; Network and Computer Technology, vol.12167, pp.723-728, SPIE, 2022.
41. [41] S. B. Needleman and C. D. Wunsch, "A general method applicable to the search for simi larities in the amino acid sequence of two proteins," Journal of Molecular Biology, vol.48, no.3, pp.443-453, 1970. [DOI:10.1016/0022-2836(70)90057-4]
42. [42] S. Charbonnier, N. Bouchair, and P. Gayet, "Fault template extraction to assist operators during industrial alarm floods," Engineering Applications of Artificial Intelligence, vol.50, pp.32-44, 2016. [DOI:10.1016/j.engappai.2015.12.007]
43. [43] M. R. Parvez, W. Hu, and T. Chen, "Comparison of the smith-waterman and Needleman- Wunsch algorithms for online similarity analysis of industrial alarm floods," in IEEE Electric Power and Energy Conference, pp.1-6, IEEE, 2020. [DOI:10.1109/EPEC48502.2020.9320080]
44. [44] J. Shang and T. Chen, "Early classification of alarm floods via exponentially attenuated component analysis," IEEE Transactions on Industrial Electronics, vol.67, no.10, pp.8702-8712, 2019. [DOI:10.1109/TIE.2019.2949542]
45. [45] H. S. Alinezhad, J. Shang, and T. Chen, "Early classification of industrial alarm floods based on semi-supervised learning," IEEE Transactions on Industrial Informatics, vol.18, no.3, pp.1845-1853, 2021. [DOI:10.1109/TII.2021.3081417]
46. [46] S. F. Altschul, W. Gish, W. Miller, E. W. Myers, and D. J. Lipman, "Basic local alignment search tool," Journal of Molecular Biology, vol.215, no.3, pp.403-410, 1990. [DOI:10.1016/S0022-2836(05)80360-2]
47. [47] W. Hu, J. Wang, and T. Chen, "A local alignment approach to similarity analysis of industrial alarm flood sequences," Control Engineering Practice, vol.55, pp.13-25, 2016. [DOI:10.1016/j.conengprac.2016.05.021]
48. [48] Y. Xu, W. Tan, and T. Li, "An alarm flood pattern matching algorithm based on modified blast with Leveshtein distance," in International Conference on Control, Automation, Robotics and Vision, pp.1-6, IEEE, 2016. [DOI:10.1109/ICARCV.2016.7838817]
49. [49] J. Han, J. Pei, B. Mortazavi-Asl, H. Pinto, Q. Chen, U. Dayal, and M. Hsu, "Prefixspan: Mining sequential patterns efficiently by prefix-projected pattern growth," in Inter- national Conference on Data Engineering, pp.215-224, IEEE, 2001.
50. [50] T. Niyazmand and I. Izadi, "Pattern mining in alarm flood sequences using a modified Prefixspan algorithm," ISA Transactions, vol.90, pp.287-293, 2019. [DOI:10.1016/j.isatra.2018.12.050]
51. [51] J. Wang, R. Jia, J. Zhou, and M. Zhou, "Mining sequential alarm pattern based on the incremental causality Prefixspan algorithm," IEEE Transactions on Artificial Intelligence, 2022. [DOI:10.1109/TAI.2022.3156052]
52. [52] Q.-X. Zhu, C. Jin, Y.-L. He, and Y. Xu, "Pattern mining of alarm flood sequences using an improved Prefixspan algorithm with tolerance to short-term order ambiguity," Industrial & Engineering Chemistry Research, vol.60, no.11, pp.4375-4384, 2021. [DOI:10.1021/acs.iecr.0c05618]
53. [53] S. Yang, T. Zhang, Y. Zhai, K. Wang, G. Zhao, Y. Tu, and L. Cheng, "Frequent alarm pattern mining of industrial alarm flood sequences by an improved Prefixspan algorithm," Processes, vol.11, no.4, p.1169, 2023. [DOI:10.3390/pr11041169]
54. [54] W. Hu, Z. Wang, and J. Wang, "A priority-aware sequential pattern mining method for detection of compact patterns from alarm floods," Journal of Process Control, vol.129, p.103041, 2023. [DOI:10.1016/j.jprocont.2023.103041]
55. [55] Z. Wang, W. Hu, W. Cao, and M. Wu, "Detection of sequential alarm patterns in complex industrial facilities using clasp and top-k algorithms," in Chinese Control Conference, pp.4671-4676, IEEE, 2021. [DOI:10.23919/CCC52363.2021.9549705]
56. [56] C. Belavadi, V. S. Sardar, and S. S. Chaudhari, "Alarm pattern recognition in continuous process control systems using data mining," International Journal of Computing, vol.21, no.3, pp.333-341, 2022. [DOI:10.47839/ijc.21.3.2689]
57. [57] J. Wang and J. Han, "Bide: Efficient mining of frequent closed sequences," in International Conference on Data Engineering, pp.79-90, IEEE, 2004.
58. [58] B. Zhou, W. Hu, and T. Chen, "Pattern extraction from industrial alarm flood sequences by a modified Clofast algorithm," IEEE Transactions on Industrial Informatics, vol.18, no.1, pp.288-296, 2021. [DOI:10.1109/TII.2021.3071361]
59. [59] F. Fumarola, P. F. Lanotte, M. Ceci, and D. Malerba, "Clofast: closed sequential pattern mining using sparse and vertical id-lists," Knowledge and Information Systems, vol.48, pp.429-463, 2016. [DOI:10.1007/s10115-015-0884-x]
60. [60] M. R. Parvez, W. Hu, and T. Chen, "Real-time pattern matching and ranking for early prediction of industrial alarm floods," Control Engineering Practice, vol.120, p.105004, 2022. [DOI:10.1016/j.conengprac.2021.105004]
61. [61] X. Rong, "word2vec parameter learning explained," arXiv preprint arXiv:1411.2738, 2014.
62. [62] S. Cai, L. Zhang, A. Palazoglu, and J. Hu, "Clustering analysis of process alarms using word embedding," Journal of Process Control, vol.83, pp.11-19, 2019. [DOI:10.1016/j.jprocont.2019.08.011]
63. [63] H. S. Alinezhad, J. Shang, and T. Chen, "A modified bag-of-words representation for industrial alarm floods," in International Symposium on Advanced Control of Industrial Processes, pp.331-336, IEEE, 2022. [DOI:10.1109/AdCONIP55568.2022.9894226]
64. [64] X. Zhang, W. Hu, A. W. Al-Dabbagh, and W. Cao, "Similarity analysis of industrial alarm floods based on word embedding and move-split-merge distance," in International Conference on Industrial Cyber-Physical Systems, pp.1-6, IEEE, 2023. [DOI:10.1109/ICPS58381.2023.10128020]
65. [65] W. Hu, X. Zhang, J. Wang, G. Yang, and Y. Cai, "Pattern matching of industrial alarm floods using word embedding and dynamic time warping," Journal of Automatica Sinica, vol.10, no.4, pp.1096-1098, 2023. [DOI:10.1109/JAS.2023.123594]
66. [66] H. Khaleghy and I. Izadi, "Detection of correlated alarms using graph embedding," in International Conference on Signal Processing and Intelligent Systems, pp.1-7, IEEE, 2021. [DOI:10.1109/ICSPIS54653.2021.9729368]
67. [67] Grover and J. Leskovec, "Node2vec: Scalable feature learning for networks," in ACM International Conference on Knowledge Discovery and Data Mining, pp.855-864, 2016. [DOI:10.1145/2939672.2939754]

Add your comments about this article : Your username or Email:
CAPTCHA

Send email to the article author


Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

© 2024 CC BY-NC 4.0 | Journal of Control

Designed & Developed by : Yektaweb