Volume 18, Issue 3 (Journal of Control, V.18, N.3 Fall 2024)                   JoC 2024, 18(3): 59-69 | Back to browse issues page

XML Persian Abstract Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Zanganeh J, Hosseini Sani S K, Pariz N. Consensus of Delayed Linear Multi-Agent Systems with Dynamic Leader Under Saturation Constraints of Relative States. JoC 2024; 18 (3) :59-69
URL: http://joc.kntu.ac.ir/article-1-1019-en.html
1- Department of Electrical Engineering, Faculty of Engineering, Ferdowsi University of Mashhad (FUM), Mashhad, Iran
Abstract:   (1381 Views)
In this paper, the consensus problem of linear multi-agent systems (MASs) with time-varying communication delay and dynamic leader under saturations of the relative states is studied. First, using the incidence matrix and edge Laplacian matrix, the consensus of delayed MAS with the saturation of relative states is transformed into the problem of edge dynamics stability on the closed sets. For this purpose, using saturation functions, a distributed control protocol is designed, which ensures the consensus of all agents despite the relative state saturation constraints. Then, by providing a proper Lyapunov-Krasovskii functional, sufficient conditions for the stability of the agents are created. By applying these conditions, not only consensus is reached and all agents follow the path of the dynamic leader well, but also saturation of the relative state does not happen. While the limited communication delay can be time-varying and arbitrarily fast. This stability and consensus are obtained by maintaining graph continuity. Finally, the validity of theoretical results is demonstrated by simulating a practical example.
Full-Text [PDF 815 kb]   (64 Downloads)    
Type of Article: Research paper | Subject: Special
Received: 2024/01/17 | Accepted: 2024/07/28 | ePublished ahead of print: 2024/09/28 | Published: 2024/11/21

References
1. [1] Abouheaf, M.I., et al., Multi-agent discrete-time graphical games and reinforcement learning solutions. Automatica, 2014. 50(12): p. 3038-3053. [DOI:10.1016/j.automatica.2014.10.047]
2. [2] Wang, X., Y. Hong, and H. Ji, Distributed optimization for a class of nonlinear multiagent systems with disturbance rejection. IEEE transactions on Cybernetics, 2015. 46(7): p. 1655-1666. [DOI:10.1109/TCYB.2015.2453167]
3. [3] Ge, X. and Q.-L. Han, Consensus of multiagent systems subject to partially accessible and overlapping Markovian network topologies. IEEE transactions on cybernetics, 2016. 47(8): p. 1807-1819. [DOI:10.1109/TCYB.2016.2570860]
4. [4] Wen, G., et al., Pinning a complex network to follow a target system with predesigned control inputs. IEEE Transactions on Systems, Man, and Cybernetics: Systems, 2018. 50(6): p. 2293-2304. [DOI:10.1109/TSMC.2018.2803147]
5. [5] Esmailifar, S.M. and F. Saghafi, Cooperative localization of marine targets by UAVs. Mechanical Systems and Signal Processing, 2017. 87: p. 23-42. [DOI:10.1016/j.ymssp.2016.08.027]
6. [6] González, A., et al., Predictor-feedback synthesis in coordinate-free formation control under time-varying delays. Automatica, 2020. 113: p. 108811. [DOI:10.1016/j.automatica.2020.108811]
7. [7] Yamchi, M.H. and R.M. Esfanjani, Distributed predictive formation control of networked mobile robots subject to communication delay. Robotics and Autonomous Systems, 2017. 91: p. 194-207. [DOI:10.1016/j.robot.2017.01.005]
8. [8] Jiang, H., Q. Bi, and S. Zheng, Impulsive consensus in directed networks of identical nonlinear oscillators with switching topologies. Communications in Nonlinear Science and Numerical Simulation, 2012. 17(1): p. 378-387. [DOI:10.1016/j.cnsns.2011.04.030]
9. [9] Olfati-Saber, R. and R.M. Murray, Consensus problems in networks of agents with switching topology and time-delays. IEEE Transactions on automatic control, 2004. 49(9): p. 1520-1533. [DOI:10.1109/TAC.2004.834113]
10. [10] Wellman, B.J. and J.B. Hoagg, A flocking algorithm with individual agent destinations and without a centralized leader. Systems & Control Letters, 2017. 102: p. 57-67. [DOI:10.1016/j.sysconle.2017.01.006]
11. [11] Toner, J. and Y. Tu, Flocks, herds, and schools: A quantitative theory of flocking. Physical review E, 1998. 58(4): p. 4828. [DOI:10.1103/PhysRevE.58.4828]
12. [12] Kar, S. and J.M. Moura, Distributed consensus algorithms in sensor networks with imperfect communication: Link failures and channel noise. IEEE Transactions on Signal Processing, 2008. 57(1): p. 355-369. [DOI:10.1109/TSP.2008.2007111]
13. [13] Ding, L., Q.-L. Han, and E. Sindi, Distributed cooperative optimal control of DC microgrids with communication delays. IEEE Transactions on Industrial Informatics, 2018. 14(9): p. 3924-3935. [DOI:10.1109/TII.2018.2799239]
14. [14] Chen, J., et al., Fusion state estimation for power systems under DoS attacks: A switched system approach. IEEE Transactions on Systems, Man, and Cybernetics: Systems, 2019. 49(8): p. 1679-1687. [DOI:10.1109/TSMC.2019.2895912]
15. [15] Wan, Y., et al., On the structural perspective of computational effectiveness for quantized consensus in layered UAV networks. IEEE Transactions on Control of Network Systems, 2018. 6(1): p. 276-288. [DOI:10.1109/TCNS.2018.2813926]
16. [16] Chu, H., et al., Consensus of multiagent systems with relative state saturations. IEEE Transactions on Systems, Man, and Cybernetics: Systems, 2019. 51(4): p. 2391-2402. [DOI:10.1109/TSMC.2019.2912980]
17. [17] Jiang, W., Y. Chen, and T. Charalambous, Consensus of general linear multi-agent systems with heterogeneous input and communication delays. IEEE Control Systems Letters, 2020. 5(3): p. 851-856. [DOI:10.1109/LCSYS.2020.3006452]
18. [18] Wang, D. and W. Wang, Necessary and sufficient conditions for containment control of multi-agent systems with time delay. Automatica, 2019. 103: p. 418-423. [DOI:10.1016/j.automatica.2018.12.029]
19. [19] Luo, S., et al., Output consensus of heterogeneous linear multi-agent systems with communication, input and output time-delays. Journal of the Franklin Institute, 2020. 357(17): p. 12825-12839. [DOI:10.1016/j.jfranklin.2020.09.032]
20. [20] Zhou, B., Truncated predictor feedback for time-delay systems. 2014: Springer. [DOI:10.1007/978-3-642-54206-0]
21. [21] Krstic, M., Delay compensation for nonlinear, adaptive, and PDE systems. 2009. [DOI:10.1007/978-0-8176-4877-0]
22. [22] Kharitonov, V.L., Lyapunov functionals and matrices. Annual reviews in control, 2010. 34(1): p. 13-20. [DOI:10.1016/j.arcontrol.2010.02.001]
23. [23] Gao, Q. and H.R. Karimi, Stability, control and application of time-delay systems. 2019: Butterworth-Heinemann.
24. [24] Kharitonov, V.L. and D. Melchor-Aguilar, On delay-dependent stability conditions. Systems & Control Letters, 2000. 40(1): p. 71-76. [DOI:10.1016/S0167-6911(00)00003-7]
25. [25] Fridman, E., Introduction to time-delay systems: Analysis and control. 2014: Springer. [DOI:10.1007/978-3-319-09393-2]
26. [26] Hou, W., et al., Consensus conditions for general second-order multi-agent systems with communication delay. Automatica, 2017. 75: p. 293-298. [DOI:10.1016/j.automatica.2016.09.042]
27. [27] Wang, Z., J. Xu, and H. Zhang, Consensusability of multi-agent systems with time-varying communication delay. Systems & Control Letters, 2014. 65: p. 37-42. [DOI:10.1016/j.sysconle.2013.12.011]
28. [28] Li, Y., C. Wang, and D. Liang, Truncated prediction-based distributed consensus control of linear multi-agent systems with discontinuous communication and input delay. Neurocomputing, 2020. 409: p. 217-230. [DOI:10.1016/j.neucom.2020.05.048]
29. [29] Ahmed, Z., et al., Consensus control of multi-agent systems with input and communication delay: A frequency domain perspective. ISA transactions, 2020. 101: p. 69-77. [DOI:10.1016/j.isatra.2020.02.005]
30. [30] Yan, Z., et al., Event-triggered formation control for time-delayed discrete-time multi-agent system applied to multi-UAV formation flying. Journal of the Franklin Institute, 2023. 360(5): p. 3677-3699. [DOI:10.1016/j.jfranklin.2023.01.036]
31. [31] Yang, W., Z. Shi, and Y. Zhong, Robust time‐varying formation control for uncertain multi‐agent systems with communication delays and nonlinear couplings. International Journal of Robust and Nonlinear Control, 2024. 34(1): p. 147-166. [DOI:10.1002/rnc.6965]
32. [32] Jenabzadeh, A. and W. Zhang, Tracking control problem in general linear and Lipschitz nonlinear multi-agent systems with jointly connected topology. Journal of the Franklin Institute, 2020. 357(10): p. 6121-6136. [DOI:10.1016/j.jfranklin.2020.04.006]
33. [33] Wang, J., et al., Cooperative Control of Multi-Agent Systems: An Optimal and Robust Perspective. 2020: Academic Press. [DOI:10.1201/9781003164142]
34. [34] Chu, H., et al., Adaptive PI control for consensus of multiagent systems with relative state saturation constraints. IEEE Transactions on Cybernetics, 2019. 51(4): p. 2296-2302. [DOI:10.1109/TCYB.2019.2954955]
35. [35] Chu, H., et al., Consensus of multiagent systems with time-varying input delay and relative state saturation constraints. IEEE Transactions on Systems, Man, and Cybernetics: Systems, 2020. 51(11): p. 6938-6944. [DOI:10.1109/TSMC.2019.2961395]
36. [36] Chu, H., et al., Observer-based consensus of nonlinear multiagent systems with relative state estimate constraints. IEEE Transactions on Systems, Man, and Cybernetics: Systems, 2018. 50(7): p. 2456-2465. [DOI:10.1109/TSMC.2018.2818172]
37. [37] Zanganeh, J., S.K. Hosseini Sani, and N. Pariz, Consensus tracking control for time-varying delayed linear multi-agent systems under relative state saturation constraints. Transactions of the Institute of Measurement and Control, 2023: p. 01423312231162970. [DOI:10.1177/01423312231162970]
38. [38] Fridman, E., Tutorial on Lyapunov-based methods for time-delay systems. European Journal of Control, 2014. 20(6): p. 271-283. [DOI:10.1016/j.ejcon.2014.10.001]
39. [39] Adams, R.J., et al., Robust multivariable flight control. 2012: Springer Science & Business Media.

Add your comments about this article : Your username or Email:
CAPTCHA

Send email to the article author


Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

© 2025 CC BY-NC 4.0 | Journal of Control

Designed & Developed by : Yektaweb