دوره 17، شماره 3 - ( مجله کنترل، جلد 17، شماره 3، پاییز 1402 )                   جلد 17 شماره 3,1402 صفحات 53-37 | برگشت به فهرست نسخه ها

XML English Abstract Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Barazesh M, Javidi Dasht Bayaz M H. Investigating the Effect of Tariff Revision Process on Electricity Retail Tariff and Utilities Death Spiral. JoC 2023; 17 (3) :37-53
URL: http://joc.kntu.ac.ir/article-1-1034-fa.html
برازش محمدرضا، جاویدی محمدحسین. بررسی تأثیر فرآیند بازنگری تعرفه ها بر مارپیچ مرگ تعرفه خرده فروشی برق و خدمات شهری. مجله کنترل. 1402; 17 (3) :37-53

URL: http://joc.kntu.ac.ir/article-1-1034-fa.html


1- دانشگاه فردوسی مشهد، مشهد ، ایران
چکیده:   (525 مشاهده)
استقرار سریع منابع انرژی توزیع شده (DER) فروش و درآمد شرکت های برق را از بین می برد. بیم آن می رود که تلاش برای بازیابی درآمد از دست رفته آنها از طریق افزایش تعرفه ها ممکن است شرکت های خدمات شهری را در "مارپیچ مرگ" به دام بیندازند. در این مقاله، تعامل بین شرکت‌ها، مصرف‌کنندگان و DERها با استفاده از دینامیک سیستم (SD) برای بررسی تأثیر منابع تجدیدپذیر توزیع‌شده بر آب و برق مدل‌سازی می‌شود. علاوه بر این، مدل جدیدی برای تجدید نظر در تعرفه برق ایجاد شده است که تأخیرهای نظارتی و سازمانی را در بر می گیرد. مدل با آخرین داده های موجود شبیه سازی شده و تحلیل حساسیت برای پارامترهای مهم انجام شده است. نتایج نشان می دهد که در حالی که مارپیچ مرگ در شرایط عادی یک تهدید فوری نیست، تاخیر در بازنگری قیمت می تواند نوسانات قابل توجهی در تعرفه برق ایجاد کند که با افزایش تاخیر بدتر می شود. یکی دیگر از نتایج این مطالعه این است که رشد جمعیت پتانسیل کاهش اثرات مارپیچ مرگ را دارد. از طرف دیگر، شرکت‌های خدمات شهری که به مناطقی با نرخ رشد پایین جمعیت خدمات می‌دهند، مانند اروپا، با تهدید جدی‌تری از سوی منابع توزیع شده مواجه هستند.
متن کامل [PDF 1489 kb]   (136 دریافت)    
نوع مطالعه: پژوهشي | موضوع مقاله: تخصصي
دریافت: 1401/6/3 | پذیرش: 1401/8/27 | انتشار: 1402/9/10

فهرست منابع
1. [1] A. Ford, "System dynamics and the electric power industry," System Dynamics Review, vol. 13, no. 1, pp. 57-85, 1997 https://doi.org/10.1002/(SICI)1099-1727(199721)13:1<57::AID-SDR117>3.0.CO;2-B [DOI:10.1002/(SICI)1099-1727(199721)13:13.0.CO;2-B]
2. [2] E. Graffy and S.Kihm. "Does Disruptive Competition Mean a Death Spiral For Electic Utilities?" Energy Law Journal, vol. 35, no. 1, pp. 1-13, 2014
3. [3] J. A. P. Lopes, N. Hatziargyriou, J. Mutale, P. Djapic, and N. Jenkins, "Integrating distributed generation into electric power systems: A review of drivers, challenges and opportunities," Electric Power Systems Research, vol. 77, no. 9, pp. 1189-1203, Jul. 2007, doi: 10.1016/J.EPSR.2006.08.016. [DOI:10.1016/j.epsr.2006.08.016]
4. [4] S. E. Razavi et al., "Impact of distributed generation on protection and voltage regulation of distribution systems: A review," Renewable and Sustainable Energy Reviews, vol. 105, pp. 157-167, May 2019, doi: 10.1016/J.RSER.2019.01.050. [DOI:10.1016/j.rser.2019.01.050]
5. [5] M. S. Kim, R. Haider, G. J. Cho, C. H. Kim, C. Y. Won, and J. S. Chai, "Comprehensive Review of Islanding Detection Methods for Distributed Generation Systems," Energies, vol. 12, no. 5, p. 837, Mar. 2019, doi: 10.3390/EN12050837. [DOI:10.3390/en12050837]
6. [6] S. Kakran and S. Chanana, "Smart operations of smart grids integrated with distributed generation: A review," Renewable and Sustainable Energy Reviews, vol. 81, pp. 524-535, Jan. 2018, doi: 10.1016/J.RSER.2017.07.045. [DOI:10.1016/j.rser.2017.07.045]
7. [7] Z. A. Arfeen, A. B. Khairuddin, R. M. Larik, and M. S. Saeed, "Control of distributed generation systems for microgrid applications: A technological review," International Transactions on Electrical Energy Systems, vol. 29, no. 9, p. e12072, Sep. 2019, doi: 10.1002/2050-7038.12072. [DOI:10.1002/2050-7038.12072]
8. [8] B. Singh and J. Sharma, "A review on distributed generation planning," Renewable and Sustainable Energy Reviews, vol. 76, pp. 529-544, Sep. 2017, doi: 10.1016/J.RSER.2017.03.034. [DOI:10.1016/j.rser.2017.03.034]
9. [9] F. P. Sioshansi, Distributed Generation and its Implications for the Utility Industry. 2014.
10. [10] F. P. Sioshansi, Innovation and Disruption at the Grid's Edge, 1st ed. Academic Press, 2017. doi: 10.1016/B978-0-12-811758-3.00001-2. [DOI:10.1016/B978-0-12-811758-3.00001-2]
11. [11] F. P. Sioshansi, Future of Utilities Utilities of the Future, 1st ed. Academic Press, 2016. [DOI:10.1016/B978-0-12-804249-6.00001-4]
12. [12] M. Chesser, J. Hanly, D. Cassells, and N. Apergis, "The positive feedback cycle in the electricity market: Residential solar PV adoption, electricity demand and prices," Energy Policy, vol. 122, no. July, pp. 36-44, 2018, doi: 10.1016/j.enpol.2018.07.032. [DOI:10.1016/j.enpol.2018.07.032]
13. [13] John. D. Sterman, Business Dynamics: Systems Thinking and Modeling for a Complex World, 1st ed. McGraw-Hill Education, 2000.
14. [14] M. Barazesh, F. F. Nia, and M. H. J. D. Bayaz, "Investigating the Effect of Renewable Distributed Generation and Price Elasticity of Demand on Electric Utilities' Death Spiral," in 2019 International Power System Conference (PSC), Dec. 2019, pp. 216-221. doi: 10.1109/PSC49016.2019.9081453. [DOI:10.1109/PSC49016.2019.9081453]
15. [15] N. D. Laws, B. P. Epps, S. O. Peterson, M. S. Laser, and G. K. Wanjiru, "On the utility death spiral and the impact of utility rate structures on the adoption of residential solar photovoltaics and energy storage," Appl Energy, vol. 185, pp. 627-641, 2017, doi: 10.1016/j.apenergy.2016.10.123. [DOI:10.1016/j.apenergy.2016.10.123]
16. [16] M. Castaneda, M. Jimenez, S. Zapata, C. J. Franco, and I. Dyner, "Myths and facts of the utility death spiral," Energy Policy, vol. 110, no. 65, pp. 105-116, 2017, doi: 10.1016/j.enpol.2017.07.063. [DOI:10.1016/j.enpol.2017.07.063]
17. [17] M. Castaneda, C. J. Franco, and I. Dyner, "Evaluating the effect of technology transformation on the electricity utility industry," Renewable and Sustainable Energy Reviews, vol. 80, no. 65, pp. 341-351, 2017, doi: 10.1016/j.rser.2017.05.179. [DOI:10.1016/j.rser.2017.05.179]
18. [18] S. Young, A. Bruce, and I. MacGill, "Potential impacts of residential PV and battery storage on Australia's electricity networks under different tariffs," Energy Policy, vol. 128, no. January, pp. 616-627, 2019, doi: 10.1016/j.enpol.2019.01.005. [DOI:10.1016/j.enpol.2019.01.005]
19. [19] M. Kubli and S. Ulli-Beer, "Decentralisation dynamics in energy systems: A generic simulation of network effects," Energy Res Soc Sci, vol. 13, pp. 71-83, 2016, doi: 10.1016/j.erss.2015.12.015. [DOI:10.1016/j.erss.2015.12.015]
20. [20] M. Kubli, "Squaring the sunny circle? On balancing distributive justice of power grid costs and incentives for solar prosumers," Energy Policy, vol. 114, no. June 2016, pp. 173-188, 2018, doi: 10.1016/j.enpol.2017.11.054. [DOI:10.1016/j.enpol.2017.11.054]
21. [21] D. W. H. Cai, S. Adlakha, S. H. Low, P. De Martini, and K. Mani Chandy, "Impact of residential PV adoption on Retail Electricity Rates," Energy Policy, vol. 62, pp. 830-843, 2013, doi: 10.1016/j.enpol.2013.07.009. [DOI:10.1016/j.enpol.2013.07.009]
22. [22] A. Satchwell, A. Mills, and G. Barbose, "Quantifying the financial impacts of net-metered PV on utilities and ratepayers," Energy Policy, vol. 80, pp. 133-144, 2015, doi: 10.1016/j.enpol.2015.01.043. [DOI:10.1016/j.enpol.2015.01.043]
23. [23] K. W. Costello and R. C. Hemphill, "Electric utilities' 'death spiral': Hyperbole or reality?," Electricity Journal, vol. 27, no. 10, pp. 7-26, 2014, doi: 10.1016/j.tej.2014.09.011. [DOI:10.1016/j.tej.2014.09.011]
24. [24] N. R. Darghouth, G. Barbose, and R. Wiser, "The impact of rate design and net metering on the bill savings from distributed PV for residential customers in California," Energy Policy, vol. 39, no. 9, pp. 5243-5253, 2011, doi: 10.1016/j.enpol.2011.05.040. [DOI:10.1016/j.enpol.2011.05.040]
25. [25] N. R. Darghouth, R. H. Wiser, G. Barbose, and A. D. Mills, "Net metering and market feedback loops: Exploring the impact of retail rate design on distributed PV deployment," Appl Energy, vol. 162, pp. 713-722, 2016, doi: 10.1016/j.apenergy.2015.10.120. [DOI:10.1016/j.apenergy.2015.10.120]
26. [26] Q. Hoarau and Y. Perez, "Network tariff design with prosumers and electromobility: Who wins, who loses?," Energy Econ, vol. 83, pp. 26-39, 2019, doi: 10.1016/j.eneco.2019.05.009. [DOI:10.1016/j.eneco.2019.05.009]
27. [27] C. Eid, J. Reneses Guillén, P. Frías Marín, and R. Hakvoort, "The economic effect of electricity net-metering with solar PV: Consequences for network cost recovery, cross subsidies and policy objectives," Energy Policy, vol. 75, pp. 244-254, 2014, doi: 10.1016/j.enpol.2014.09.011. [DOI:10.1016/j.enpol.2014.09.011]
28. [28] M. Castaneda, S. Zapata, J. Cherni, A. J. Aristizabal, and I. Dyner, "The long-term effects of cautious feed-in tariff reductions on photovoltaic generation in the UK residential sector," Renew Energy, vol. 155, pp. 1432-1443, 2020, doi: 10.1016/j.renene.2020.04.051. [DOI:10.1016/j.renene.2020.04.051]
29. [29] S. Candas, K. Siala, and T. Hamacher, "Sociodynamic modeling of small-scale PV adoption and insights on future expansion without feed-in tariffs," Energy Policy, vol. 125, no. October 2017, pp. 521-536, 2019, doi: 10.1016/j.enpol.2018.10.029. [DOI:10.1016/j.enpol.2018.10.029]
30. [30] F. A. Felder and R. Athawale, "The life and death of the utility death spiral," Electricity Journal, vol. 27, no. 6, pp. 9-16, 2014, doi: 10.1016/j.tej.2014.06.008. [DOI:10.1016/j.tej.2014.06.008]
31. [31] K. W. Costello, "Major challenges of distributed generation for state utility regulators," Electricity Journal, vol. 28, no. 3, pp. 8-25, 2015, doi: 10.1016/j.tej.2015.03.002. [DOI:10.1016/j.tej.2015.03.002]
32. [32] C. Rochlin, "Distributed renewable resources and the utility business model," Electricity Journal, vol. 29, no. 1, pp. 7-12, 2016, doi: 10.1016/j.tej.2015.12.001. [DOI:10.1016/j.tej.2015.12.001]
33. [33] S. P. Burger and M. Luke, "Business models for distributed energy resources: A review and empirical analysis," Energy Policy, vol. 109, no. June, pp. 230-248, 2017, doi: 10.1016/j.enpol.2017.07.007. [DOI:10.1016/j.enpol.2017.07.007]
34. [34] J. Zapata Riveros, M. Kubli, and S. Ulli-Beer, "Prosumer communities as strategic allies for electric utilities: Exploring future decentralization trends in Switzerland," Energy Res Soc Sci, vol. 57, no. September 2018, p. 101219, 2019, doi: 10.1016/j.erss.2019.101219. [DOI:10.1016/j.erss.2019.101219]
35. [35] M. Engelken, B. Römer, M. Drescher, I. M. Welpe, and A. Picot, "Comparing drivers, barriers, and opportunities of business models for renewable energies: A review," Renewable and Sustainable Energy Reviews, vol. 60, pp. 795-809, 2016, doi: 10.1016/j.rser.2015.12.163. [DOI:10.1016/j.rser.2015.12.163]
36. [36] A. Satchwell, A. Mills, and G. Barbose, "Regulatory and ratemaking approaches to mitigate financial impacts of net-metered PV on utilities and ratepayers," Energy Policy, vol. 85, pp. 115-125, 2015, doi: 10.1016/j.enpol.2015.05.019. [DOI:10.1016/j.enpol.2015.05.019]
37. [37] J. Riesz and J. Gilmore, "Rethinking business models for network service providers - Shadow pricing against storage," in 2015 IEEE PES Asia-Pacific Power and Energy Engineering Conference (APPEEC), Nov. 2015, vol. 3, pp. 1-5. doi: 10.1109/APPEEC.2015.7381041. [DOI:10.1109/APPEEC.2015.7381041]
38. [38] A. S. Ibanez-Lopez, J. M. Martinez-Val, and B. Y. Moratilla-Soria, "A dynamic simulation model for assessing the overall impact of incentive policies on power system reliability, costs and environment," Energy Policy, vol. 102, no. March 2016, pp. 170-188, 2017, doi: 10.1016/j.enpol.2016.12.026. [DOI:10.1016/j.enpol.2016.12.026]
39. [39] A. Ford, "System Dynamics Models of Environment, Energy, and Climate Change," in System Dynamics, New York, NY: Springer US, 2020, pp. 375-399. doi: 10.1007/978-1-4939-8790-0_541. [DOI:10.1007/978-1-4939-8790-0_541]
40. [40] S. Ahmad, R. Mat Tahar, F. Muhammad-Sukki, A. B. Munir, and R. Abdul Rahim, "Application of system dynamics approach in electricity sector modelling: A review," Renewable and Sustainable Energy Reviews, vol. 56, pp. 29-37, 2016, doi: 10.1016/j.rser.2015.11.034. [DOI:10.1016/j.rser.2015.11.034]
41. [41] A. Leopold, "Energy related system dynamic models: a literature review," Cent Eur J Oper Res, vol. 24, no. 1, pp. 231-261, 2016, doi: 10.1007/s10100-015-0417-4. [DOI:10.1007/s10100-015-0417-4]
42. [42] C. Pechman, "Regulation and the Monopoly Status of the Electric Distribution Utility," Washington DC, Jun. 2022. Accessed: Oct. 18, 2022. [Online]. Available: https://bit.ly/3nahkTZ
43. [43] UTILITIES CODE CHAPTER 36. RATES. https://statutes.capitol.texas.gov/Docs/UT/htm/UT.36.htm (accessed Oct. 18, 2022).
44. [44] IURC: Rate Case Overview & Process. https://www.in.gov/iurc/about-us/rate-case-overview-and-process/ (accessed Oct. 18, 2022).
45. [45] B. Terzic, "The Interface between Utility Regulation and Financial Markets Acknowledgments and Disclaimers," Washington D.C., Nov. 2018.
46. [46] General Rate Case. https://www.cpuc.ca.gov/industries-and-topics/electrical-energy/electric-rates/general-rate-case (accessed Oct. 18, 2022).
47. [47] Major Rate Case Process Overview. https://www3.dps.ny.gov/W/PSCWeb.nsf/0/364D0704BEEC5B7D85257856006C56B3?OpenDocument (accessed Oct. 18, 2022).
48. [48] Frank M. Bass, "A New Product Growth for Model Consumer Durables," Management Science, vol. 15. pp. 215-227, 1969. [DOI:10.1287/mnsc.15.5.215]
49. [49] IRENA, "Renewable Power Generation Costs in 2019," Abu Dhabi, 2020.
50. [50] Edison International Co., "2019 Financial and Statistical Report," Rosemead, California, 2020.
51. [51] S. Quoilin, K. Kavvadias, A. Mercier, I. Pappone, and A. Zucker, "Quantifying self-consumption linked to solar home battery systems: Statistical analysis and economic assessment," Appl Energy, vol. 182, pp. 58-67, 2016, doi: 10.1016/j.apenergy.2016.08.077. [DOI:10.1016/j.apenergy.2016.08.077]
52. [52] OECD, "Population (indicator)." 2021. doi: 10.1787/d434f82b-en. [DOI:10.1787/d434f82b-en]
53. [53] P. J. Burke and A. Abayasekara, "The Price Elasticity of Electricity Demand in the United States: A Three-Dimensional Analysis," Energy Journal, vol. 39, no. 2, pp. 87-102, 2018, doi: 10.5547/01956574.39.2.pbur. [DOI:10.5547/01956574.39.2.pbur]
54. [54] S. Ramyar, A. L. Liu, and Y. Chen, "Power Market Model in Presence of Strategic Prosumers," IEEE Transactions on Power Systems, vol. 35, no. 2, pp. 898-908, 2020, doi: 10.1109/TPWRS.2019.2937887. [DOI:10.1109/TPWRS.2019.2937887]
55. [55] A. Ford, "Waiting for the boom: A Simulation Study of Power Plant Construction in California," Energy Policy, vol. 29, no. 11, pp. 847-869, Sep. 2001, doi: 10.1016/S0301-4215(01)00035-0. [DOI:10.1016/S0301-4215(01)00035-0]

ارسال نظر درباره این مقاله : نام کاربری یا پست الکترونیک شما:
CAPTCHA

ارسال پیام به نویسنده مسئول


بازنشر اطلاعات
Creative Commons License این مقاله تحت شرایط Creative Commons Attribution-NonCommercial 4.0 International License قابل بازنشر است.

کلیه حقوق این وب سایت متعلق به مجله کنترل می باشد.

طراحی و برنامه نویسی : یکتاوب افزار شرق

© 2024 CC BY-NC 4.0 | Journal of Control

Designed & Developed by : Yektaweb