Volume 18, Issue 1 (Journal of Control, V.18, N.1 Spring 2024)                   JoC 2024, 18(1): 1-11 | Back to browse issues page

XML Persian Abstract Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Aliyari-Shoorehdeli M, Alikhani H. Fault Detection and Isolation of Linear Roesser Systems with Stochastic Communications. JoC 2024; 18 (1) :1-11
URL: http://joc.kntu.ac.ir/article-1-1043-en.html
1- Department of Systems and Control Engineering, Faculty of Electrical Engineering, K. N. Toosi University of Technology, Tehran, Iran
2- Department of Mechatronics Engineering, Faculty of Electrical Engineering, K. N. Toosi University of Technology, Tehran, Iran
Abstract:   (294 Views)
This paper addresses the problem of the fault detection and isolation of the two-dimensional (2D) linear Roesser systems with stochastic communication. Stochastic data transmission from the plant to the observer through the network is considered to reduce the required bandwidth of the communication network significantly. In this regard, the fault detection and isolation problem, while being robust with respect to the disturbances, is modeled as two H_∞ and a H_- optimization problems. The overall design approach of the observer with stochastic data transmission is proposed as a linear optimization problem with linear matrix inequality (LMI) constraints to get the best robust performance in fault detection and isolation while maintaining the stability of the observer. Finally, the effectiveness of the developed robust fault detection and isolation observer with stochastic reduced output data transmission is shown through some simulations.
Full-Text [PDF 634 kb]   (140 Downloads)    
Type of Article: Research paper | Subject: Special
Received: 2023/04/3 | Accepted: 2023/10/3 | Published: 2024/06/20

References
1. S.J. Qin, "Survey on data-driven industrial process monitoring and diagnosis", Annual reviews in control, 2012. 36(2): p. 220-234. [DOI:10.1016/j.arcontrol.2012.09.004]
2. Y. Lei, B. Yang, X. Jiang, F. Jia, N. Li, and A.K. Nandi, "Applications of machine learning to machine fault diagnosis: A review and roadmap", Mechanical Systems and Signal Processing, 2020. 138: p. 106587. [DOI:10.1016/j.ymssp.2019.106587]
3. A. Abbaspour,S. Mokhtari,A. Sargolzaei, and K.K. Yen, "A survey on active fault-tolerant control systems", Electronics, 2020. 9(9): p. 1513. [DOI:10.3390/electronics9091513]
4. C. Qiao, and S. Sun, "Fault detection for networked systems with random delays and packet losses", Journal of Process Control, 2015. 35: p. 80-88. [DOI:10.1016/j.jprocont.2015.08.008]
5. Y. Ge, J. Wang, L. Zhang, B. Wang, and C. Li, "Robust fault tolerant control of distributed networked control systems with variable structure", Journal of the Franklin Institute, 2016. 353(12): p. 2553-2575. [DOI:10.1016/j.jfranklin.2016.05.005]
6. A.H. Tahoun, "Fault-tolerant control for a class of quantised networked control of nonlinear systems with unknown time-varying sensor faults", International Journal of Control, 2020. 93(3): p. 619-628. [DOI:10.1080/00207179.2018.1484170]
7. W.P. Heemels, K.H. Johansson, and P. Tabuada. "An introduction to event-triggered and self-triggered control", in 2012 ieee 51st ieee conference on decision and control (cdc). 2012. IEEE. [DOI:10.1109/CDC.2012.6425820]
8. K. Liu, E. Fridman, K.H. Johansson, Y. Xia, "Quantized control under round-robin communication protocol, IEEE Transactions on Industrial Electronics, 2016. 63(7): p. 4461-4471. [DOI:10.1109/TIE.2016.2539259]
9. B. Li, Z. Wang, Q.L. Han, H. Liu, "Distributed quasi consensus control for stochastic multiagent systems under Round-Robin protocol and uniform quantization", IEEE Transactions on Cybernetics, 2020. 52(7): p. 6721-6732. [DOI:10.1109/TCYB.2020.3026001]
10. W. Ren, S. Sun, F. Huo, Y. Lu, "Nonfragile H∞ fault detection for fuzzy discrete systems under stochastic communication protocol", Optimal Control Applications and Methods, 2021. 42(1): p. 261-278. [DOI:10.1002/oca.2674]
11. T. Kaczorek, "Two-dimensional linear systems", 1985: Springer. [DOI:10.1007/BFb0005617]
12. R. Roesser, "A discrete state-space model for linear image processing", IEEE Transactions on Automatic Control, 1975. 20(1): p. 1-10. [DOI:10.1109/TAC.1975.1100844]
13. Y. Wang, F. Gao, and F.J. Doyle III, "Survey on iterative learning control, repetitive control, and run-to-run control", Journal of Process Control, 2009. 19(10): p. 1589-1600. [DOI:10.1016/j.jprocont.2009.09.006]
14. H. Alikhani, M.A. Shoorehdeli, and N. Meskin, "A Functional Unknown Input Observer for Linear Singular Fornasini-Marchesini First Model Systems: With Application to Fault Diagnosis", IEEE Systems Journal, 2020. 15(3): p. 4093-4104. [DOI:10.1109/JSYST.2020.3011906]
15. P. Pakshin, J. Emelianova, K. Gałkowski, and E. Rogers, "Stabilization of Two-Dimensional Nonlinear Systems Described by Fornasini--Marchesini and Roesser Models", SIAM Journal on Control and Optimization, 2018. 56(5): p. 3848-3866. [DOI:10.1137/16M1076575]
16. M. Wang, G. Feng, and J. Qiu, "Finite-frequency fuzzy output feedback controller design for Roesser-type two-dimensional nonlinear systems", IEEE Transactions on Fuzzy Systems, 2020. 29(4): p. 861-873. [DOI:10.1109/TFUZZ.2020.2966155]
17. R. Yang, and W.X. Zheng, "Two-dimensional sliding mode control of discrete-time Fornasini-Marchesini systems", IEEE Transactions on Automatic Control, 2019. 64(9): p. 3943-3948. [DOI:10.1109/TAC.2019.2890889]
18. H. Alikhani, M.A. Shoorehdeli, and N. Meskin, "Robust Anomaly Detection Based on a Dynamical Observer for Continuous Linear Roesser Systems", IFAC-PapersOnLine, 2020. 53(2): p. 664-669. [DOI:10.1016/j.ifacol.2020.12.812]
19. J. Fu, Z. Duan, and Z. Xiang, "On mixed ℓ1/ℓ− fault detection observer design for positive 2D Roesser systems: Necessary and sufficient conditions", Journal of the Franklin Institute, 2022. 359(1): p. 160-177. [DOI:10.1016/j.jfranklin.2020.09.049]
20. T. Chevet, A. Rauh, T.N. Dinh, J. Marzat, T. Raissi, "Robust Interval Observer for Systems Described by the Fornasini-Marchesini Second Model", IEEE Control Systems Letters, 2021. 6: p. 1940-1945. [DOI:10.1109/LCSYS.2021.3136762]
21. X. Li, and X. Hou, "Robust design of iterative learning control for a batch process described by 2D Roesser system with packet dropouts and time‐varying delays", International Journal of Robust and Nonlinear Control, 2020. 30(3): p. 1035-1049. [DOI:10.1002/rnc.4812]
22. L.V. Hien, and N.T. Lan‐Huong, "Observer‐based control of 2D Roesser systems with random packet dropout", IET Control Theory & Applications, 2020. 14(5): p. 774-780. [DOI:10.1049/iet-cta.2019.0831]
23. R. Yang, W.X. Zheng, and Y. Yu, "Event-triggered sliding mode control of discrete-time two-dimensional systems in Roesser model", Automatica, 2020. 114: p. 108813. [DOI:10.1016/j.automatica.2020.108813]
24. H. Alikhani, and N. Meskin, "Event-triggered robust fault diagnosis and control of linear Roesser systems: A unified framework", Automatica, 2021. 128: p. 109575. [DOI:10.1016/j.automatica.2021.109575]
25. R. Yang, and Y. Yu, "Event-triggered control of discrete-time 2-D switched Fornasini-Marchesini systems", European Journal of Control, 2019. 48: p. 42-51. [DOI:10.1016/j.ejcon.2018.12.008]
26. Y.Y. Tao, and Z.G. Wu, "Asynchronous control of two-dimensional Markov jump Roesser systems: an event-triggering strategy", IEEE Transactions on Network Science and Engineering, 2022. 9(4): p. 2278-2289. [DOI:10.1109/TNSE.2022.3161579]
27. X. Lv, Y. Niu, and J. Song, "Sliding mode control for uncertain 2D systems under stochastic communication protocol: The Roesser model case", IEEE Transactions on Circuits and Systems II: Express Briefs, 2021. 69(3): p. 1228-1232. [DOI:10.1109/TCSII.2021.3115515]
28. K. Zhu,J. Hu,Y. Liu,N.D. Alotaibi, and F.E. Alsaadi, "On ℓ2-ℓ∞ output-feedback control scheduled by stochastic communication protocol for two-dimensional switched systems", International Journal of Systems Science, 2021. 52(14): p. 2961-2976. [DOI:10.1080/00207721.2021.1914768]
29. D. Li, J. Liang, and F. Wang, "Observer‐based output feedback H∞ control of two‐dimensional systems with periodic scheduling protocol and redundant channels", IET Control Theory & Applications, 2020. 14(20): p. 3713-3722. [DOI:10.1049/iet-cta.2020.0590]
30. M. Li, J. Liang, and F. Wang, "Robust set-membership filtering for two-dimensional systems with sensor saturation under the Round-Robin protocol", International Journal of Systems Science, 2022. 53(13): p. 2773-2785. [DOI:10.1080/00207721.2022.2049918]
31. D. Li, J. Liang, and F. Wang, "H∞ state estimation for two-dimensional systems with randomly occurring uncertainties and Round-Robin protocol", Neurocomputing, 2019. 349: p. 248-260. [DOI:10.1016/j.neucom.2019.03.052]

Add your comments about this article : Your username or Email:
CAPTCHA

Send email to the article author


Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

© 2024 CC BY-NC 4.0 | Journal of Control

Designed & Developed by : Yektaweb