دوره 14، شماره 1 - ( مجله کنترل، جلد 14، شماره 1، بهار 1399 )                   جلد 14 شماره 1,1399 صفحات 73-91 | برگشت به فهرست نسخه ها

XML English Abstract Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Abooee A, Ahmadzadeh H R, Haeri M, Arefi M M. Designing Robust Finite-Time Nonlinear Torques for a n-DOF Robot Manipulator with Uncertainties, Sector and Dead-Zone Nonlinearities. JoC. 2020; 14 (1) :73-91
URL: http://joc.kntu.ac.ir/article-1-520-fa.html
ابوئی علی، احمدزاده حمیدرضا، حائری محمد، عارفی محمدمهدی. طراحی گشتاورهای غیرخطی زمان-محدود مقاوم برای ربات n-درجه آزادی درحضور نامعینی‌ها و غیرخطی‌سازهای ورودی شعاعی و ناحیه مرده. مجله کنترل. 1399; 14 (1) :73-91

URL: http://joc.kntu.ac.ir/article-1-520-fa.html


1- دانشگاه یزد
2- دانشگاه صنعتی شریف
3- دانشگاه شیراز
چکیده:   (1803 مشاهده)
در این مقاله، ابتدا مدل دینامیکی جامعی برای ربات بازویی n-درجه آزادی دارای نامعینی ارائه می‌شود که شامل توصیف عملکرد غیرخطی‌سازهای ورودی از نوع شعاعی و ناحیه مرده است. سپس، مسئله‌ی ردیابی زمان-محدود مقاوم مسیرهای دلخواه به صورت روابط ریاضی فرمول‌بندی و بیان می‌شود. در ادامه با تعمیم روش کنترل مد لغزشی ترمینال غیرتکین و تعریف خمینه‌های لغزشی غیرخطی جدید، چندین نوع گشتاورهای ورودی طراحی می‌شوند تا با وجود نامعینی‌ها و غیرخطی سازهای ورودی (شعاعی و ناحیه مرده)، متغیرهای پیکربندی مفاصل ربات را در مدت زمان محدودی و بدون هیچ نوع خطاهای حالت ماندگاری به مسیرهای دلخواه برسانند. برای هر دسته از گشتاورهای پیشنهادی، پایداری زمان-محدود سرتاسری سیستم حلقه‌بسته‌ی ربات n-درجه آزادی با استفاده از تعدادی لم‌های کاربردی و نامساوی‌های متداول به اثبات می‌رسد و هم‌چنین روابطی برای تخمین زمان‌های محدود همگرایی استخراج می‌شوند. این روابط، ارتباط زمان‌های محدود همگرایی را با شرایط اولیه ربات و پارامترهای اختیاری موجود درگشتاورهای ورودی نشان می‌دهند. در انتها، با استفاده از محیط شبیه‌سازی نرم‌افزار MATLAB، گشتاورهای طراحی شده به مدل ربات صنعتی چهار-درجه آزادی SCARA با وجود غیرخطی‌سازهای ورودی اعمال می‌شوند که نتایج شبیه‌سازی‌ها، عملکرد مناسب و قابل قبول ورودی‌های کنترلی پیشنهادی را نشان می‌دهند.
متن کامل [PDF 1107 kb]   (132 دریافت)    
نوع مطالعه: پژوهشي | موضوع مقاله: تخصصي
دریافت: 1396/6/13 | پذیرش: 1397/10/17 | انتشار: 1399/3/22

فهرست منابع
1. [1] N. Adhikary and C. Mahanta, "Inverse dynamics based robust control method for position commanded servo actuators in robot manipulators," Control Engineering Practice, vol. 66, no. 1, pp. 146-155, 2017. [DOI:10.1016/j.conengprac.2017.07.001]
2. [2] Z. Ma and G. Sun, "Dual terminal sliding mode control design for rigid robotic manipulator," Journal of the Franklin Institute, doi: 10.1016/j.jfranklin.2017.01.034, Available online 4 February, 2017. [DOI:10.1016/j.jfranklin.2017.01.034]
3. [3] M. Galicki, "Finite-time trajectory tracking control in a task space of robotic manipulator," Automatica, vol. 67, no. 1, pp. 165-170, 2016. [DOI:10.1016/j.automatica.2016.01.025]
4. [4] M. D. Tran and H. J. Kang, "Adaptive terminal sliding mode control of uncertain robotic manipulator based on local approximation of a dynamic system," Nerocomputing, vol. 228, no. 1, pp. 231-240, 2017. [DOI:10.1016/j.neucom.2016.09.089]
5. [5] K. Kaltsoukalas, S. Makris, and G. Chryssolouris, "On generating the motion of industrial robot manipulators," Robotics and Computer-Integrated Manufacturing, vol. 32, no. 1, pp. 65-71, 2015. [DOI:10.1016/j.rcim.2014.10.002]
6. [6] G. Rigatos, P. Siano, and G. Raffo, "An H-infinity nonlinear control approach for multi-DOF robotic manipulator," IFAC-Paper Online, vol. 49, no. 12, pp. 1406-1411, 2016. [DOI:10.1016/j.ifacol.2016.07.766]
7. [7] S. I. Han and J. Lee, "Finite-time sliding surface constrained control for a robot manipulator with an unknown dead-zone and disturbance," ISA Transactions, vol. 65, no. 1, pp. 307-318, 2016. [DOI:10.1016/j.isatra.2016.07.013]
8. [8] A. Abooee, M. Moravej Khorasani, and M. Haeri, "Finite Time Control of Robotic Manipulators with Position Output Feedback," International Journal of Robust and Nonlinear Control, vol. 27, no. 16, pp. 2982-2999, 2017. [DOI:10.1002/rnc.3721]
9. [9] A. Mohammadi, M. Tavakoli, H. J. Marquez, and F. Hashemzadeh, "Nonlinear disturbance observer design for robotic manipulators," Control Engineering Practice, vol. 21, no. 3, pp. 253-267, 2013. [DOI:10.1016/j.conengprac.2012.10.008]
10. [10] X. Wang and J. Zhao, "Autonomous switched control of load shifting robot manipulators," IEEE Transactions on Industrial Electronics, vol. 64, no. 9, pp. 7161-7170, 2017. [DOI:10.1109/TIE.2017.2688958]
11. [11] M. Wang and A. Yang, "Dynamic learning from adaptive neural control of robot manipulators with prescribed performance," IEEE Transactions on Systems Man, and Cybernetics: Systems, vol. 47, no. 8, pp. 2244-2255, 2017. [DOI:10.1109/TSMC.2016.2645942]
12. [12] J. Lee, P. H. Chang, and M. Jin, "Adaptive integral sliding mode control with time-delay estimation for robot manipulators," IEEE Transactions on Industrial Electronics, vol. 64, no. 8, pp. 6796-6804, 2017. [DOI:10.1109/TIE.2017.2698416]
13. [13] G. Paolo, I. A. Ferrara, and L. Magni, "MPC for robot manipulators with integral sliding mode generation," IEEE/ASME Transactions on Mechatronics, vol. 22, no. 3, pp. 1299-1307, 2017. [DOI:10.1109/TMECH.2017.2674701]
14. [14] H. Wang, "Adaptive control of robot manipulators with uncertain kinematics and dynamics," IEEE Transactions on Automatics Control, vol. 62, no. 2, pp. 948-954, 2017. [DOI:10.1109/TAC.2016.2575827]
15. [15] Y. Wang, L. Gu, Y. Xu, and X. Cao, "Practical tracking control of robot manipulators with continuous fractional-order nonsingular terminal sliding mode," IEEE Transactions on Industrial Electronics, vol. 63, no. 10, pp. 6194-6204, 2016. [DOI:10.1109/TIE.2016.2569454]
16. [16] J. Baek, M. Jin, and S. Han, "A new adaptive sliding-mode control scheme for application to robot manipulators," IEEE Transactions on Industrial Electronics, vol. 63, no. 6, pp. 3628-3637, 2016. [DOI:10.1109/TIE.2016.2522386]
17. [17] D. Nojavanzadeh and M. Badamchizadeh, "Adaptive fractional-order non-singular fast terminal sliding mode control for robot manipulators," IET Control Theory and Applications, vol. 10, no. 13, pp. 1565-1572, 2016. [DOI:10.1049/iet-cta.2015.1218]
18. [18] B. Baigzadehnoe, Z. Rahmani, A. Khosravi, and B. Rezaie, "On position/force tracking control problem of cooperative robot manipulators using adaptive fuzzy backstepping approach," ISA Transactions, vol. 70, no. 1, pp. 432-446, 2017. [DOI:10.1016/j.isatra.2017.07.029]
19. [19]علي ابويي، مسعود مروج خراسانی و محمد حائری، "رديابي زمان محدود سرتاسري كلاس جامعي از سيستم هاي غيرخطي با استفاده از كنترل تطبيقي-لغزشي ترمينال غيرتكين" مجله علمي و پژوهشي کنترل و ابزار دقيق، جلد 9، شماره 4، تابستان 1394، صفحات 39-27.
20. [20] D. J. López-Araujo, A. Zavala-Río, V. Santibáñez, and F. Reyes, "Global adaptive regulation of robot manipulators with bounded inputs," IFAC Proceedings Volume, vol. 45, no. 22, pp. 881-888, 2012. [DOI:10.3182/20120905-3-HR-2030.00008]
21. [21] J. Wilson, M. Charest, and R. Dubay, "Non-linear model predictive control schemes with application on a 2-link vertical robot manipulator," Robotics and Computer-Integrated Manufacturing, vol. 41, no. 1, pp. 23-30, 2016. [DOI:10.1016/j.rcim.2016.02.003]
22. [22] P. R. Ouyang, W. J. Zhang, and M. M. Gupta, "An adaptive switching learning control method for trajectory tracking of robot manipulators," Mechatronics, vol. 16, no. 1, pp. 51-61, 2006. [DOI:10.1016/j.mechatronics.2005.08.002]
23. [23] T. Sun, H. Pei, Y. Pan, H. Zhou, and C. Zhang, "Neural network-based sliding mode adaptive control for robot manipulators," Neurocomputing, vol. 74, no. 14, pp. 2377-2384, 2011. [DOI:10.1016/j.neucom.2011.03.015]
24. [24] P. Tomei, "Adaptive PD controller for robot manipulators," IEEE Transactions on Robotics and Automation, vol. 7, no. 4, pp. 565-570, 1991. [DOI:10.1109/70.86088]
25. [25] A. Zavala-Rio and V. Santibanez, "A natural saturating extension of the PD-with-desired-gravity-compensation control law for robot manipulators with bounded inputs," IEEE Transactions on Robotics, vol. 23, no. 2, pp. 386-391, 2007. [DOI:10.1109/TRO.2007.892224]
26. [26] A. Zavala-Rio and V. Santibanez, "Simple extensions of the PD-with-gravity-compensation control law for robot manipulators with bounded inputs," IEEE Transactions on Control Systems Technology, vol. 14, no. 5, pp. 958-965, 2006. [DOI:10.1109/TCST.2006.876932]
27. [27] R. Kelly, "Global positioning of robot manipulators via PD control plus a class of nonlinear integral actions," IEEE Transactions on Automatic Control, vol. 43, no. 7, pp. 934-938, 1998. [DOI:10.1109/9.701091]
28. [28] F. Temurtas, H. Temurtas, and N. Yumusak, "Application of neural generalized predictive control to robotic manipulators with a cubic trajectory and random disturbances," Robotics and Autonomous Systems, vol. 54, no. 1, pp. 74-83, 2006. [DOI:10.1016/j.robot.2005.09.013]
29. [29] W. He, D. O. Amoateng, C. Yang, and D. Gong, "Adaptive neural network control of a robotic manipulator with unknown backlash-like hysteresis," IET Control Theory and Applications, vol. 11, no. 4, pp. 567-575, 2017. [DOI:10.1049/iet-cta.2016.1058]
30. [30] C. Sun, W. He, and J. Hong, "Neural network control of a flexible robotic manipulator using the lumped spring-mass model," IEEE Transactions on Systems, Man, and Cybernetics: Systems, vol. 47, no. 8, pp. 1863-1874, 2017. [DOI:10.1109/TSMC.2016.2562506]
31. [31] R. J. Wai and R. Muthusamy, "Design of fuzzy-neural-network-inherited backstepping control for Robot manipulator including actuator dynamics," IEEE Transactions on Fuzzy Systems, vol. 22, no. 4, pp. 709-722, 2014. [DOI:10.1109/TFUZZ.2013.2270010]
32. [32] M. R. Soltanpour, P. Otadolajam, M. H. Khooban, "Robust control strategy for electrically driven robot manipulators: adaptive fuzzy sliding mode," IET Science, Measurement and Technology, vol. 9, no. 3, pp. 322-334, 2015. [DOI:10.1049/iet-smt.2013.0265]
33. [33] Z. Li, C. Yang, C. Y. Su, S. Deng, F. Sun, and W. Zhang, "Decentralized fuzzy control of multiple cooperating robotic manipulators with impedance interaction," IEEE Transactions on Fuzzy Systems, vol. 23, no. 4, pp. 1044-1056, 2015. [DOI:10.1109/TFUZZ.2014.2337932]
34. [34] Z. Zhang, L. Zheng, J. Yu, Y. Li, and Z. Yu, "Three recurrent neural networks and three numerical methods for solving a repetitive motion planning scheme of redundant robot manipulators," IEEE/ASME Transactions on Mechatronics, vol. 22, no. 3, pp. 1423-1434, 2017. [DOI:10.1109/TMECH.2017.2683561]
35. [35] M. Vijay and D. Jena. "PSO based neuro fuzzy sliding mode control for a robot manipulator," Journal of Electrical Systems and Information Technology, vol. 4, no. 1, pp. 243-256, 2017. [DOI:10.1016/j.jesit.2016.08.006]
36. [36] P. Gierlak and M. Szuster, "Adaptive position/force control for robot manipulator in contact with a flexible environment," Robotics and Autonomous Systems, vol. 95, no. 1, pp. 80-101, 2017. [DOI:10.1016/j.robot.2017.05.015]
37. [37] N. Nikdel, M. A. Badamchizadeh, V. Azimirad, and M. A. Nazari, "Adaptive backstepping control for an n-degree of freedom robotic manipulator based on combined state augmentation," Robotics and Computer-Integrated Manufacturing, vol. 44, no. 1, pp. 129-143, 2017. [DOI:10.1016/j.rcim.2016.08.007]
38. [38] D. Zhang and B. Wei, "A review on model reference adaptive control of robotic manipulators," Annual Reviews in Control, vol. 43, no. 1, pp. 188-198, 2017. [DOI:10.1016/j.arcontrol.2017.02.002]
39. [39] S. H. Park and S. I. Han, "Robust-tracking control for robot manipulator with dead-zone and friction using backstepping and RFNN controller," IET Control Theory and Applications, vol. 5, no. 12, pp. 1397-1417, 2011. [DOI:10.1049/iet-cta.2010.0460]
40. [40] W. He, Y. Dong, and C. Sun, "Adaptive neural impedance control of a robotic manipulator with input saturation," IEEE Transactions on Systems, Man, and Cybernetics: Systems, vol. 46, no. 3, pp. 334-344, 2016. [DOI:10.1109/TSMC.2015.2429555]
41. [41] E. Aguinaga-Ruiz, A. Zavala-Rio, V. Santibanez, and F. Reyes, "Global trajectory tracking through static feedback for robot manipulators with bounded inputs," IEEE Transactions on Control Systems Technology, vol. 17, no. 4, pp. 934-944, 2009. [DOI:10.1109/TCST.2009.2013938]
42. [42] V. Santibanez, R. Kelly, and M. A. Liama, "A novel global asymptotic stable set-point fuzzy controller with bounded torques for robot manipulators," IEEE Transactions on Fuzzy Systems, vol. 13, no. 3, pp. 362-372, 2005. [DOI:10.1109/TFUZZ.2004.841735]
43. [43] W. Deng, J. Yao, and D. Ma, "Robust adaptive asymptotic tracking control of a class of nonlinear systems with unknown input dead-zone," Journal of the Franklin Institute, vol. 352, no. 12, pp. 5686-5707, 2015. [DOI:10.1016/j.jfranklin.2015.09.013]
44. [44] S. Hasanzadeh, F. Janabi-Sharifi, and P. Keenan, "Backlash characterization and position control of a robotic catheter manipulator using experimentally-based kinematic model," Mechatronics, vol. 44, no. 1, pp. 94-106, 2017. [DOI:10.1016/j.mechatronics.2017.05.002]
45. [45] K. C. Hsu, W. Y. Wang, and P. Z. Lin, "Sliding mode control for uncertain nonlinear systems with multiple inputs containing sector nonlinearities and dead-zones," IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics), vol. 34, no. 1, pp. 374-380, 2004. [DOI:10.1109/TSMCB.2003.817029]
46. [46] B. K. Dinh, M. Xiloyannis, L. Cappello, C. W. Antuvan, S. C. Yen, and L. Masia, "Adaptive backlash compensation in upper limb soft wearable exoskeletons," Robotics and Autonomous Systems, vol. 92, no. 1, pp. 173-186, 2017. [DOI:10.1016/j.robot.2017.03.012]
47. [47] T. Yang, S. Yan, and Z. Han, "Nonlinear model of space manipulator joint considering time-variant stiffness and backlash," Journal of Sound and Vibration, vol. 341, no. 1, pp. 246-259, 2015. [DOI:10.1016/j.jsv.2014.12.028]
48. [48] A. Abooee and M. Haeri, "Stabilization of commensurate fractional order polytopic nonlinear differential inclusion subject to input nonlinearity and unknown disturbances," IET Control Theory & Applications, vol. 7, no. 12, pp. 1624-1633, 2013. [DOI:10.1049/iet-cta.2013.0038]
49. [49]علي ابويي و محمد حائری، "سنكرون‌سازي دو شمول‌ ديفرانسيلي لور با وجود پارامترهاي نامعلوم و غيرخطي‌ساز شعاعي در مسير ورودي‌هاي كنترلي" مجله علمي و پژوهشي کنترل و ابزار دقيق، جلد 7، شماره 2، تابستان 1392، صفحات 69-57.
50. [50] S. P. Bhat and D. S. Bernstein, "Continuous finite-time stabilization of the translational and rotational double integrators," IEEE Transactions on Automatic Control, vol. 43, no. 5, pp. 678-682, 1998. [DOI:10.1109/9.668834]
51. [51] Z. Zuo and L. Tie, "A new class of finite-time nonlinear consensus protocols for multi-agent systems," International Journal of Control, vol. 87, no. 2, pp. 363-370, 2016. [DOI:10.1080/00207179.2013.834484]
52. [52] A. Polyakov, D. Efimov, and W. Perruquetti, "Finite-time and fixed-time stabilization: Implicit Lyapunov function approach," Automatica, vol. 51, no. 1, pp. 332-340, 2015. [DOI:10.1016/j.automatica.2014.10.082]
53. [53] X. H. Zhang, K. Zhang, and X. J. Xie, "Finite-time output feedback stabilization of nonlinear high-order feed forward systems," International Journal of Robust and Nonlinear Control, vol. 26, no. 8, pp. 1794-1814, 2016. [DOI:10.1002/rnc.3384]
54. [54] S. E. Parsegov, A. E. Polyakov, and P. S. Shcherbakov, "Fixed-time consensus algorithm for multi-agent systems with integrator dynamics," IFAC Proceedings Volumes, vol. 46, no. 27, pp. 110-115, 2013. [DOI:10.3182/20130925-2-DE-4044.00055]
55. [55] Y. Feng, X. Yu, and F. Han, "On nonsingular terminal sliding-mode control of nonlinear systems," Automatica, vol. 49, no. 6, pp. 1715-1722, 2013. [DOI:10.1016/j.automatica.2013.01.051]
56. [56] Y. Zhang, G. Liu, and B. Luo, "Finite-time cascaded tracking control approach for mobile robots," Information Sciences, vol. 284, no. 1, pp. 31-43, 2014. [DOI:10.1016/j.ins.2014.06.037]
57. [57] S. Mondal and C. Mahanta, "Adaptive second order terminal sliding mode controller for robotic manipulators," Journal of the Franklin Institute, vol. 351, no. 4, pp. 2356-2377, 2014. [DOI:10.1016/j.jfranklin.2013.08.027]
58. [58] Z. Zuo, "Nonsingular fixed-time consensus tracking for second-order multi-agent networks," Automatica, vol. 54, no. 1, pp. 305-309, 2015. [DOI:10.1016/j.automatica.2015.01.021]
59. [59] A. Abooee, M. Moravej Khorasani, and M. Haeri "Global Finite Time Stabilization of a Class of Uncertain MIMO Nonlinear Systems," Journal of Dynamic Systems, Measurement, and Control, vol. 138, no. 2, pp 021007 (1-9), 2016. [DOI:10.1115/1.4032065]
60. [60] H. Liu, T. Zhang, and X. Tian, "Continuous output-feedback finite-time control for a class of second-order nonlinear systems with disturbances," International Journal of Robust and Nonlinear Control, vol. 26, no. 2, pp. 218-234, 2016. [DOI:10.1002/rnc.3305]
61. [61] S. P. Bhat and D. S. Bernstein, "Geometric homogeneity with applications to finite-time stability," Mathematics of Control, Signals and Systems, vol. 17, no. 2, pp. 101-127, 2005. [DOI:10.1007/s00498-005-0151-x]
62. [62] S. P. Bhat and D. S. Bernstein, "Finite-time stability of continuous autonomous systems," SIAM Journal on Control and Optimization, vol. 38, no. 3, pp. 751-766, 2000. [DOI:10.1137/S0363012997321358]
63. [63] M. Defoort, A. Polyakov, G. Demesure, M. Djemai, and K. Veluvolu, "Leader-follower fixed-time consensus for multi-agent systems with unknown non-linear inherent dynamics," IET Control Theory and Applications, vol. 9, no. 14, pp. 2165-2170, 2015. [DOI:10.1049/iet-cta.2014.1301]
64. [64] A. Polyakov and A. Poznyak, "Lyapunov function design for finite-time convergence analysis: "Twisting" controller for second-order sliding mode realization," Automatica, vol. 45, no. 2, pp. 444-448, 2009. [DOI:10.1016/j.automatica.2008.07.013]

ارسال نظر درباره این مقاله : نام کاربری یا پست الکترونیک شما:
CAPTCHA

ارسال پیام به نویسنده مسئول


کلیه حقوق این وب سایت متعلق به مجله کنترل می باشد.

طراحی و برنامه نویسی : یکتاوب افزار شرق

© 2020 All Rights Reserved | Journal of Control

Designed & Developed by : Yektaweb