1. [1] H. Ritchie and M. Roser, "Causes of Death," Our World in Data, 2020.
2. [2] F. Biemar and M. Foti, "Global progress against cancer-challenges and opportunities," Cancer biology and medicine, vol. 10, no. 4, pp. 183-186, 2013.
3. [3] R. P. Araujo and D. L. S. MCelwain, "History of the study of solid tumour growth: the contribution of mathematical modeling," Bulletin of 2Mathematical Biology, vol. 66, pp. 1039-1091, 2004. [
DOI:10.1016/j.bulm.2003.11.002]
4. [4] J.C. Doloff and D. J. Waxman, "Transcriptional profiling provides insights into metronomic cyclophosphamide-activated, innate immune-dependent regression of braintumor xenografts," BMC Cancer, vol. 15, no. 1, p. 375, 2015. [
DOI:10.1186/s12885-015-1358-y]
5. [5] L. G. De Pillis and A. E. Radunskaya, "A mathematical tumor model with immune resistance and drug therapy: an optimal control approach," Journal of Theoretical Medicine, vol. 3, no. 2, pp. 79-100, 2001. [
DOI:10.1080/10273660108833067]
6. [6] T. Chen, N.F.Kirkby, and R. Jena, "Optimal dosing of cancer chemotherapy using model predictive control and moving horizon state/parameter estimation," Computer Methods Programs Biomedicine, vol. 108, no. 3, pp. 1337-1340, 2012. [
DOI:10.1016/j.cmpb.2012.05.011]
7. [7] K.L. Kiran, D. Jayachandran, and S. Lakshminarayanan, "Multi-objective optimization of cancer immuno-chemotherapy," presented at the 13th International Conferenceon Biomedical Engineering, 2009.
8. [8] S.L. Noble, E. Sherer, R.E.Hannemann, D.Ramkrishna, T. Vik, and A.E.Rundell, "Using adaptive model predictive control to customize maintenance therapy chemotherapeutic dosing for childhood a cutely mphoblastic leukemia," Journal of Theoretical Biology, vol. 264, no. 3, pp. 990-1002, 2010. [
DOI:10.1016/j.jtbi.2010.01.031]
9. [9] M. Engelhart, D. Lebiedz, and S. Sager, "Optimal control for selected cancer chemotherapy ODE models: a view on the potential of optimal schedules and choice of objective function," Mathematical Biosciences, vol. 229, no. 1, pp. 123-134, 2011. [
DOI:10.1016/j.mbs.2010.11.007]
10. [10] A. Ghaffari, M. Nazari, and F. Arab, "Suboptimal mixed vaccine and chemotherapy in finite duration cancer treatment: state-dependent Riccati equation control," Journal of the Brazilian Society of Mechanical Sciences and Engineering, vol. 37, no. 1, pp. 45-56, 2015. [
DOI:10.1007/s40430-014-0172-9]
11. [11] N. Babaei and M. Salamci, "Controller design for personalized drug administration in cancer therapy: Successive approximation approach," Optimal Control Applications and Methods, pp. 1-38, 2017. [
DOI:10.1002/oca.2372]
12. [12] N. Babaei and M. U. Salamci, "Mixed therapy in cancer treatment for personalized drug administration using model reference adaptive control," European Journal of Control, vol. In press, 2019. [
DOI:10.1016/j.ejcon.2019.03.001]
13. [13] K.C. Tan, E.F. Khor, J. Cai, C. Heng, and T. H.Lee, "Automating the drug scheduling of cancer chemotherapy via evolutionary computation," Artifficial Intelligence in Medicine, vol. 25, no. 2, pp. 169-185, 2002. [
DOI:10.1016/S0933-3657(02)00014-3]
14. [14] S.-M.Tse, Y.Liang, K.-S.Leung, K.-H.Lee, and T.S.-K.Mok, "A memetic algorithm for multiple-drug cancer chemotherapy schedule optimization " IEEE Transactions on Systems, Man, and Cybernetics, Part B, vol. 37, no. 1, pp. 84-91, 2007. [
DOI:10.1109/TSMCB.2006.883265]
15. [15] D.Vrabie, K.G.Vamvoudakis, and F.L.Lewis, Optimal Adaptive Control and Differential Games by Reinforcement Learning Principle. Lomdon, UK: Institution of Engineering andTechnology, 2013. [
DOI:10.1049/PBCE081E]
16. [16] M. Sedighizadeh and A. Rezazadeh, "Adaptive PID controller based on reinforcement learning for wind turbine control," World Academy of Science, Engineering and Technology, vol. 13, pp. 1-23, 2008.
17. [17] P. Abbeel, A. Coates, M. Quigley, and A. Y. Ng, "An application of reinforcement learning to aerobatic helicopter flight," Advances in Neural Information Processing Systems, vol. 19, pp. 1-8, 2007.
18. [18] I. Carlucho, M. De Paula, and G. G. Acosta, "An adaptive deep reinforcement learning approach for MIMO PID control of mobile robots," ISA Transactions, vol. In press, 2020. [
DOI:10.1016/j.isatra.2020.02.017]
19. [19] C. Pi, K. Hu, S. Cheng, and I. Wu, "Low-level autonomous control and tracking of quadrotor using reinforcement learning," Control Engineering Practice, vol. 95, 2020. [
DOI:10.1016/j.conengprac.2019.104222]
20. [20] W. Koch, R. Mancuso, R. West, and A. Bestavros, "Reinforcement Learning for UAV Attitude Control," ACM Transactions on Cyber-Physical Systems, vol. 22, 2019. [
DOI:10.1145/3301273]
21. [211] R. Padmanabhan, N. Meskina, and W. M. Haddad, "Reinforcement learning-based control of drug dosing for cancer chemotherapy treatment," Mathematical Biosciences, vol. 293, pp. 11-20, 2017. [
DOI:10.1016/j.mbs.2017.08.004]
22. [22] J. Martin-Guerrero, F. Gomez, E.Soria-Olivas, J. Schmidhuber, M.Climente-Marti, and N.Jemenez-Torres, "A reinforcement learning approach for individualizing erythropoiet in dosages in hemodialysis patients," Expert Systems with Applications, vol. 36, pp. 9737-9742, 2009. [
DOI:10.1016/j.eswa.2009.02.041]
23. [23] B.L. Moore, L.D. Pyeatt, V. Kulkarni, P. Panousis, Kevin, and A.G.Doufas, "Reinforcement learning for closed-loop propofol anesthesia : a study in human volunteers," Journal of Machine Learning Research, vol. 15, pp. 655-696, 2014.
24. [24] P. Yazdjerdi, N. Meskin, M. Al-Naemi, A. Al Moustafa, and L. Kovács, "Reinforcement learning-based control of tumor growth under anti-angiogenic therapy," Computer Methods and Programs in Biomedicine, vol. 173, pp. 15-26, 2019. [
DOI:10.1016/j.cmpb.2019.03.004]
25. [25] R. Padmanabhana, N. Meskin, and W. M. Haddad, "Optimal adaptive control of drug dosing using integral reinforcement learning," Mathematical Biosciences, vol. 309, pp. 131-142, 2019. [
DOI:10.1016/j.mbs.2019.01.012]
26. [26] M. Tejedor, A. Z. Woldaregay, and F. Godtliebsen, "Reinforcement learning application in diabetes blood glucose control: A systematic review," Artificial Intelligence in Medicine, vol. 104, pp. 101-183, 2020. [
DOI:10.1016/j.artmed.2020.101836]
27. [27] C. J. C. H. Watkins and P. Dayan, "Q-learning," Machine Learning, vol. 8, no. 3, pp. 279-292, 1992. [
DOI:10.1023/A:1022676722315]
28. [28] L. G. De Pillis and A. E. Radunskaya, "The dynamics of an optimally controlled tumor model: a case study," Mathematical and Computer Modeling, vol. 37, pp. 1221-1244, 2003. [
DOI:10.1016/S0895-7177(03)00133-X]
29. [29] A. Talkington, C. Dantoin, and R. Durrett, "Ordinary Differential Equation Models for Adoptive Immunotherapy," bulletin of Mathematical Biology, vol. 80, no. 5, pp. 1059-1083, 2018. [
DOI:10.1007/s11538-017-0263-8]
30. [30] L. G. De Pillis, W. Gu, and A. E. Radunskaya, "Mixed immunotherapy and chemotherapy of tumors: modeling, applications and biological interpretations," Journal of Theoretical Biology, vol. 238, pp. 841-862, 2006. [
DOI:10.1016/j.jtbi.2005.06.037]
31. [31] Y. Batmani and H. Khaloozadeh, "Optimal chemotherapy in cancer treatment: state dependent Riccati equation control and extended Kalman filter," Optimal Control Applications and Methods, vol. 34, pp. 562-577, 2012. [
DOI:10.1002/oca.2039]
32. [32] A. Ghaffari, M. Nazari, M. Khazaee, and B. Bahmaei, "Changing the dynamics of a system by using finite duration inputs: Application to cancer modeling and treatment," Journal of Solid and Fluid Mechanics, vol. 4, no. 1, pp. 79-91, 2014.
33. [33] M. Nazari and A. Ghaffari, "The effect of finite duration inputs on the dynamics of a system: Proposing a new approach for cancer treatment," International Journal of Biomathematics, vol. 8, no. 3, pp. 1-19, 2015.
34. [34] A. Ghaffari, M. Nazari, B. Bahmaie, and B. Ghaffari, "How finite duration inputs are able to change the dynamics of a system:Application to finite duration cancer treatment," presented at the 22nd Annual Conference of Mechanical Engineering, Ahvaz, Iran, 2014.
35. [35] M. Nazari, A. Ghaffari, and F. Arab, "Finite duration treatment of cancer by using vaccine therapy and optimal chemotherapy: state-dependent riccati equation control and extended kalman filter," Journal of Biological Systems, vol. 23, no. 1, 2015. [
DOI:10.1142/S0218339015500011]
36. [36] R. S. Sutton and A. G. Barto, Reinforcement Learning: An Introduction. Cambridge, MA,: MIT Press, 1998. [
DOI:10.1109/TNN.1998.712192]
37. [37] L. P. Kaelbling, M. L. Littman, and A. W. Moore, "Reinforcement learning: A survey," Journal of Artificial Intelligence Research, vol. 4, no. 1, pp. 137-285, 1996. [
DOI:10.1613/jair.301]