Volume 15, Issue 3 (Journal of Control, V.15, N.3 Fall 2021)                   JoC 2021, 15(3): 13-22 | Back to browse issues page


XML Persian Abstract Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Sohrabi N, Alihosseini A, Piroozfar V, Zamani Pedram M. Design of the optimal magnetic field in application of functionalized CNT-based drug delivery toward the cell membrane: Computational Analysis. JoC 2021; 15 (3) :13-22
URL: http://joc.kntu.ac.ir/article-1-762-en.html
1- Central Tehran Branch, Islamic Azad University
2- KN Toosi University of Technology
Abstract:   (12951 Views)
Recently, Carbon Nano (CN) structures are widely used in medical applications, especially the detection and treatment of cancer disease. Among various types of CNs, Carbone Nano Tubes (CNTs) attracted many researchers' attention to consider them toward clinical application. Regarding the intrinsic structure of CNTs, they can be used widely in drug delivery applications. Functionalized CNTs and conjugated with drug and magnetic nanoparticles (MNPs), represents an opportunity toward targeted drug delivery. In the mentioned system, MNPs play as a magnetic actuator, which can be externally excited. Delivery of the drug to a specific area, specifically inside the cellular membrane, is essential. To conduct a well-designed delivery system, the interaction force profile is needed to cross the CNTs through the membrane. The process is the primary point in a targeted drug delivery system. In this study, the computational analysis of crossing functionalized /CNTs containing anti-cancer drug through the cell membrane (lung cell) are investigated. The mathematical model shows the frequency behaviour of the cell membrane and provides a physical relation between crossing velocities and interaction forces.  In this paper, the result is based on a complex Molecular scale simulation in which they entirely compute the producer of drug delivery. The dynamics equation of the system is presented in the time and frequency domain, which can lean to provide an optimal external magnetic field profile. This design helps nanotechnologist to precisely analyze drug delivery dynamics during the time and how to implement in clinical applications. The results provide an optimal profile to deliver the drug and crossing through the cell membrane in 30 seconds, 1, 2 and 5 minutes.
Full-Text [PDF 747 kb]   (1376 Downloads)    
Type of Article: Research paper | Subject: Special
Received: 2020/05/19 | Accepted: 2021/02/15 | ePublished ahead of print: 2021/02/26 | Published: 2022/02/1

References
1. [1] Weigl, B. H., & Yager, P. (1999). Microfluidic diffusion-based separation and detection. Science, 283(5400), 346-347. [DOI:10.1126/science.283.5400.346]
2. [2] Zhang, Y., Kohler, N., & Zhang, M. (2002). Surface modification of superparamagnetic magnetite nanoparticles and their intracellular uptake. Biomaterials, 23(7), 1553-1561. [DOI:10.1016/S0142-9612(01)00267-8]
3. [3] Cooper, R. P., Doyle, J. F., Dunn, D. S., Vellinger, J. C., & Todd, P. (2004). Multistage magnetic particle separator II. Classification of ferromagnetic particles. Separation science and technology, 39(12), 2809-2825. [DOI:10.1081/SS-200028762]
4. [4] Lau, C. K., Diem, M. D., Dreyfuss, G., & Van Duyne, G. D. (2003). Structure of the Y14-Magoh core of the exon junction complex. Current Biology, 13(11), 933-941. [DOI:10.1016/S0960-9822(03)00328-2]
5. [5] Lübbe, A. S., Bergemann, C., Brock, J., & McClure, D. G. (1999). Physiological aspects in magnetic drug-targeting. Journal of Magnetism and Magnetic Materials, 194(1-3), 149-155. [DOI:10.1016/S0304-8853(98)00574-5]
6. [6] Balimane, P. V., & Chong, S. (2005). Cell culture-based models for intestinal permeability: a critique. Drug discovery today, 10(5), 335-343. [DOI:10.1016/S1359-6446(04)03354-9]
7. [7] Baghaei, B., Saeb, M. R., Jafari, S. H., Khonakdar, H. A., Rezaee, B., Goodarzi, V., & Mohammadi, Y. (2017). Modeling and closed‐loop control of particle size and initial burst of PLGA biodegradable nanoparticles for targeted drug delivery. Journal of Applied Polymer Science, 134(33), 45145. [DOI:10.1002/app.45145]
8. [8] Jordan, A., Scholz, R., Wust, P., Fähling, H., & Felix, R. (1999). Magnetic fluid hyperthermia (MFH): Cancer treatment with AC magnetic field induced excitation of biocompatible superparamagnetic nanoparticles. Journal of Magnetism and Magnetic materials, 201(1-3), 413-419. [DOI:10.1016/S0304-8853(99)00088-8]
9. [9] Hilger, I., Frühauf, K., Andrä, W., Hiergeist, R., Hergt, R., & Kaiser, W. A. (2002). Heating potential of iron oxides for therapeutic purposes in interventional radiology. Academic radiology, 9(2), 198-202. [DOI:10.1016/S1076-6332(03)80171-X]
10. [10] Zhang, W., Zhang, Z., & Zhang, Y. (2011). The application of carbon nanotubes in target drug delivery systems for cancer therapies. Nanoscale research letters, 6(1), 555. [DOI:10.1186/1556-276X-6-555]
11. [11] Ortega-Guerrero, A., Espinosa-Duran, J. M., & Velasco-Medina, J. (2016). TRPV1 channel as a target for cancer therapy using CNT-based drug delivery systems. European Biophysics Journal, 45(5), 423-433. [DOI:10.1007/s00249-016-1111-8]
12. [12] Wang, J. T. W., & Al-Jamal, K. T. (2015). Functionalized carbon nanotubes: revolution in brain delivery. Nanomedicine, 10(17), 2639-2642. [DOI:10.2217/nnm.15.114]
13. [13] Nikitin, M., Torno, M., Chen, H., Rosengart, A., & Nikitin, P. I. (2008). Quantitative real-time in vivo detection of magnetic nanoparticles by their nonlinear magnetization. Journal of applied Physics, 103(7), 07A304. [DOI:10.1063/1.2830947]
14. [14] Hamdi, M., & Ferreira, A. (2012, October). Computational study of superparamagnetic nanocapsules crossing the blood-brain barrier: A robotics approach. In 2012 IEEE/RSJ International Conference on Intelligent Robots and Systems (pp. 2313-2318). IEEE. [DOI:10.1109/IROS.2012.6385842]
15. [15] Kong, S. D., Lee, J., Ramachandran, S., Eliceiri, B. P., Shubayev, V. I., Lal, R., & Jin, S. (2012). Magnetic targeting of nanoparticles across the intact blood-brain barrier. Journal of controlled release, 164(1), 49-57. [DOI:10.1016/j.jconrel.2012.09.021]
16. [16] Zhang, X., Meng, L., Lu, Q., Fei, Z., & Dyson, P. J. (2009). Targeted delivery and controlled release of doxorubicin to cancer cells using modified single wall carbon nanotubes. Biomaterials, 30(30), 6041-6047. [DOI:10.1016/j.biomaterials.2009.07.025]
17. [17] Hajipour, M. J., Santoso, M. R., Rezaee, F., Aghaverdi, H., Mahmoudi, M., & Perry, G. (2017). Advances in alzheimer's diagnosis and therapy: The implications of nanotechnology. Trends in biotechnology, 35(10), 937-953. [DOI:10.1016/j.tibtech.2017.06.002]
18. [18] Pérez-Herrero, E., & Fernández-Medarde, A. (2015). Advanced targeted therapies in cancer: Drug nanocarriers, the future of chemotherapy. European journal of pharmaceutics and biopharmaceutics, 93, 52-79. [DOI:10.1016/j.ejpb.2015.03.018]
19. [19] Hajba, L., & Guttman, A. (2016). The use of magnetic nanoparticles in cancer theranostics: Toward handheld diagnostic devices. Biotechnology advances, 34(4), 354-361. [DOI:10.1016/j.biotechadv.2016.02.001]
20. [20] Liu, Z., Robinson, J. T., Tabakman, S. M., Yang, K., & Dai, H. (2011). Carbon materials for drug delivery & cancer therapy. Materials today, 14(7-8), 316-323. [DOI:10.1016/S1369-7021(11)70161-4]
21. [21] Heister, E., Neves, V., Lamprecht, C., Silva, S. R. P., Coley, H. M., & McFadden, J. (2012). Drug loading, dispersion stability, and therapeutic efficacy in targeted drug delivery with carbon nanotubes. Carbon, 50(2), 622-632. [DOI:10.1016/j.carbon.2011.08.074]
22. [22] Nielsen, H. A., & Madsen, H. (2006). Modelling the heat consumption in district heating systems using a grey-box approach. Energy and Buildings, 38(1), 63-71. [DOI:10.1016/j.enbuild.2005.05.002]
23. [23] Chen, H.; Medley, C.; Sefah, K.; Shangguan, D.; Tang, Z.; Meng, L.; Smith, J.; Tan,W. Molecular recognition of small-cell lung cancer cells using aptamers. Chemmedchem 2008, 3, 991-1001. [DOI:10.1002/cmdc.200800030]
24. [24] Majumder, J., & Minko, T. (2020). Targeted Nanotherapeutics for respiratory diseases: cancer, fibrosis, and coronavirus. Advanced Therapeutics, 2000203. [DOI:10.1002/adtp.202000203]

Add your comments about this article : Your username or Email:
CAPTCHA

Send email to the article author


Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

© 2024 CC BY-NC 4.0 | Journal of Control

Designed & Developed by : Yektaweb