Volume 14 - Journal of Control, Vol. 14, No. 5, Special Issue on COVID-19                   JoC 2021, 14 - Journal of Control, Vol. 14, No. 5, Special Issue on COVID-19: 39-47 | Back to browse issues page


XML Persian Abstract Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Abidi M, Soheilifard R, Hasanzadeh Ghasemi R. The effect of temperature on the binding affinity of Remdesivir and RdRp enzyme of SARS-COV-2 virus using steered molecular dynamics simulation. JoC 2021; 14 (S1) :39-47
URL: http://joc.kntu.ac.ir/article-1-815-en.html
1- Hakim Sabzevari University
Abstract:   (4221 Views)
The fatal SARS-COV-2 virus appeared in China at the end of 2019 for the first time. This virus has similar sequence with SARS-COV in 2002, but its infection is very high rate. On the other hand, SARS-COV-2 is a RNA virus and requires RNA-dependent RNA polymerase (RdRp) to transcribe its viral genome. Due to the availability of the active site of this enzyme, an effective treatment is targeting it to inhibit SARS-COV-2 reproduction. Remdesivir is an inhibitor for Hepatitis C and Ebola that is approved by Food and Drug Administration. Also, it has shown good results in inhibition of main protease and RdRp enzyme of SARS-COV-2. In this paper, the inhibitory of Remdesivir in various temperatures has been observed using steered molecular dynamics simulation. For this reason, the binding affinity of Remdesivir and RdRp were evaluated by molecular docking at four different temperatures (from 17 to 47 °C). According to the results, the rupture force and pulling work to separate the Remdesivir from RdRp decrease with increasing temperature. It is also shown that at higher temperatures, Gibbs free energy is reduced due to its relation with pulling work.
Full-Text [PDF 1106 kb]   (3176 Downloads)    
Type of Article: Research paper | Subject: COVID-19
Received: 2020/12/29 | Accepted: 2021/02/13 | Published: 2021/02/28

References
1. Li H, Liu SM, Yu XH, Tang SL, Tang CK. Coronavirus disease 2019 (COVID-19): current status and future perspectives. Int J Antimicrob Agents [Internet]. 2020;55(5):105951. Available from: [DOI:10.1016/j.ijantimicag.2020.105951]
2. Corman VM, Muth D, Niemeyer D, Drosten C. Hosts and Sources of Endemic Human Coronaviruses. In: Advances in Virus Research. 2018. p. 163-88. [DOI:10.1016/bs.aivir.2018.01.001]
3. Ngo ST, Quynh Anh Pham N, Thi Le L, Pham D-H, Vu V V. Computational Determination of Potential Inhibitors of SARS-CoV-2 Main Protease. J Chem Inf Model. 2020; [DOI:10.26434/chemrxiv.12111297.v1]
4. Huynh T, Wang H, Cornell W, Luan B. In Silico Exploration of Repurposing and Optimizing Traditional Chinese Medicine Rutin for Possibly Inhibiting SARS-CoV-2's Main Protease. 2020;1-20. [DOI:10.26434/chemrxiv.12281078]
5. Al-Dorzi HM, Van Kerkhove MD, Peiris JSM, Arabi YM. Middle east respiratory syndrome coronavirus. ERS Monogr. 2016;2016(9781849840705):21-34. [DOI:10.1183/2312508X.10010015]
6. Banerjee AK, Ray U. Mutation hot spots in Spike protein of COVID-19 virus: Mutation in spike protein. Proc Indian Natl Sci Acad. 2020;86(April). [DOI:10.16943/ptinsa/2020/155490]
7. Wrapp D, Wang N, Corbett KS, Goldsmith JA, Hsieh CL, Abiona O, et al. Cryo-EM structure of the 2019-nCoV spike in the prefusion conformation. Science (80- ). 2020;367(6483):1260-3. [DOI:10.1126/science.abb2507]
8. Saha D, Majumder R, chakraborty sourabrata, Kumar Srivastava A, Mandal M, Sarkar S. Mutations in Spike Protein of SARS-CoV-2 Modulate Receptor Binding, Membrane Fusion and Immunogenicity: An Insight into Viral Tropism and Pathogenesis of COVID-19. 2020. [DOI:10.26434/chemrxiv.12320567.v1]
9. Dayer MR. Old drugs for newly emerging viral disease, COVID-19: Bioinformatic prospective. arXiv. 2020;
10. Abdelli I, Hassani F, Bekkel Brikci S, Ghalem S. In silico study the inhibition of angiotensin converting enzyme 2 receptor of COVID-19 by Ammoides verticillata components harvested from Western Algeria. J Biomol Struct Dyn [Internet]. 2020;0(0):1-14. Available from: [DOI:10.1080/07391102.2020.1763199]
11. Salim B, Noureddine M. Identification of Compounds from Nigella Sativa as New Potential Inhibitors of 2019 Novel Coronasvirus (Covid-19): Molecular Docking Study. ChemRxiv. 2020;19:1-12.
12. Muralidharan N, Sakthivel R, Velmurugan D, Gromiha MM. Computational studies of drug repurposing and synergism of lopinavir, oseltamivir and ritonavir binding with SARS-CoV-2 protease against COVID-19. J Biomol Struct Dyn [Internet]. 2020;0(0):1-6. Available from: [DOI:10.1080/07391102.2020.1752802]
13. Aftab SO, Ghouri MZ, Masood MU, Haider Z, Khan Z, Ahmad A, et al. Analysis of SARS-CoV-2 RNA-dependent RNA polymerase as a potential therapeutic drug target using a computational approach. J Transl Med. 2020;18(1). [DOI:10.1186/s12967-020-02439-0]
14. Choy KT, Wong AYL, Kaewpreedee P, Sia SF, Chen D, Hui KPY, et al. Remdesivir, lopinavir, emetine, and homoharringtonine inhibit SARS-CoV-2 replication in vitro. Antiviral Res. 2020;178. [DOI:10.1016/j.antiviral.2020.104786]
15. Coomes EA, Haghbayan H. Favipiravir, an antiviral for COVID-19? Vol. 75, Journal of Antimicrobial Chemotherapy. 2020. p. 2013-4. [DOI:10.1093/jac/dkaa171]
16. Cao B, Wang Y, Wen D, Liu W, Wang J, Fan G, et al. A Trial of Lopinavir-Ritonavir in Adults Hospitalized with Severe Covid-19. N Engl J Med. 2020;382(19):1787-99. [DOI:10.1056/NEJMoa2001282]
17. Valk SJ, Piechotta V, Chai KL, Doree C, Monsef I, Wood EM, et al. Convalescent plasma or hyperimmune immunoglobulin for people with COVID-19: a rapid review. Vol. 2020, Cochrane Database of Systematic Reviews. 2020. [DOI:10.1002/14651858.CD013600]
18. Choudhery MS, Harris DT. Stem cell therapy for COVID-19: Possibilities and challenges. Vol. 44, Cell Biology International. 2020. p. 2182-91. [DOI:10.1002/cbin.11440]
19. Prompetchara E, Ketloy C, Palaga T. Immune responses in COVID-19 and potential vaccines: Lessons learned from SARS and MERS epidemic. Asian Pacific J Allergy Immunol. 2020;38(1):1-9.
20. Elfiky AA. Anti-HCV, nucleotide inhibitors, repurposing against COVID-19. Life Sci. 2020;248. [DOI:10.1016/j.lfs.2020.117477]
21. Zhang L, Zhou R. Binding mechanism of remdesivir to SARS-CoV-2 RNA dependent RNA polymerase. ResearchGate [Internet]. 2020;(March):2020030267. Available from: www.preprints.org [DOI:10.20944/preprints202003.0267.v1]
22. Patra A, Bhavesh NS. Virtual screening and molecular dynamics simulation suggest Valproic acid Co-A could bind to SARS-CoV2 RNA depended RNA polymerase. 2020;(March):1-10. Available from: https://www.preprints.org/manuscript/202003.0393/v1 [DOI:10.20944/preprints202003.0393.v1]
23. Elfiky AA. SARS-CoV-2 RNA dependent RNA polymerase (RdRp) targeting: an in silico perspective. J Biomol Struct Dyn. 2020; [DOI:10.1080/07391102.2020.1761882]
24. Khan A, Khan M, Saleem S, Babar Z, Ali A, Khan AA, et al. Phylogenetic Analysis and Structural Perspectives of RNA-Dependent RNA-Polymerase Inhibition from SARs-CoV-2 with Natural Products. Interdiscip Sci Comput Life Sci. 2020;12(3):335-48. [DOI:10.1007/s12539-020-00381-9]
25. Singh S, Sk MF, Sonawane A, Kar P, Sadhukhan S. Plant-derived natural polyphenols as potential antiviral drugs against SARS-CoV-2 via RNA‐dependent RNA polymerase (RdRp) inhibition: an in-silico analysis. J Biomol Struct Dyn. 2020; [DOI:10.26434/chemrxiv.12312263.v1]
26. Aouidate A, Ghaleb A, Chtita S, Aarjane M, Ousaa A, Maghat H, et al. Identification of a novel dual-target scaffold for 3CLpro and RdRp proteins of SARS-CoV-2 using 3D-similarity search, molecular docking, molecular dynamics and ADMET evaluation. J Biomol Struct Dyn. 2020; [DOI:10.1080/07391102.2020.1779130]
27. Nguyen HL, Thai NQ, Truong DT, Li MS. Remdesivir Strongly Binds to Both RNA-Dependent RNA Polymerase and Main Protease of SARS-CoV-2: Evidence from Molecular Simulations. J Phys Chem B [Internet]. 2020; Available from: http://www.ncbi.nlm.nih.gov/pubmed/33264025 [DOI:10.26434/chemrxiv.12777578.v1]
28. Lepock JR, Borrelli MJ. How do cells respond to their thermal environment? Int J Hyperth. 2005;21(8):681-7. [DOI:10.1080/02656730500307298]
29. Gota C, Okabe K, Funatsu T, Harada Y, Uchiyama S. Hydrophilic fluorescent nanogel thermometer for intracellular thermometry. J Am Chem Soc. 2009;131(8):2766-7. [DOI:10.1021/ja807714j]
30. Ngo ST, Hung HM, Nguyen MT. Fast and accurate determination of the relative binding affinities of small compounds to HIV-1 protease using non-equilibrium work. J Comput Chem. 2016;37(31):2734-42. [DOI:10.1002/jcc.24502]
31. Kumar D, Kumari K, Jayaraj A, Kumar V, Kumar RV, Dass SK, et al. Understanding the binding affinity of noscapines with protease of SARS-CoV-2 for COVID-19 using MD simulations at different temperatures. J Biomol Struct Dyn. 2020; [DOI:10.1080/07391102.2020.1752310]

Add your comments about this article : Your username or Email:
CAPTCHA

Send email to the article author


Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

© 2024 CC BY-NC 4.0 | Journal of Control

Designed & Developed by : Yektaweb