Volume 16, Issue 1 (Journal of Control, V.16, N.1 Spring 2022)                   JoC 2022, 16(1): 27-36 | Back to browse issues page


XML Persian Abstract Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Ghahremani N, Alhassan H. Design of a new algorithm to improve the convergence of extended Kalman filter based on incremental predictive model for inertial navigation system alignment and its stability analysis. JoC 2022; 16 (1) :27-36
URL: http://joc.kntu.ac.ir/article-1-874-en.html
1- Malek Ashtar University of technology
Abstract:   (5728 Views)
In this paper, a new predictive filter for alignment of the inertial navigation system with a nonlinear model is presented, and its stability is analyzed. The stability is analyzed according to the Lyapunov method. The Lyapunov function is selected as a quadratic cost function. This method provides sufficient conditions for the stability of the estimated state against measurement uncertainty and noise. The proposed method is used to improve the initial alignment accuracy of the inertial navigation system with a large misalignment azimuth angle. The measurement model of this system is nonlinear and has a modeling error. In this method, the model error is estimated and compensated in the filter algorithm; therefore, the error of the state estimation is reduced in the updating step. By performing various simulations of this method on the real data of microelectromechanical (MEMS) sensor and comparing it with EKF and UKF, it is observed that the proposed method has higher accuracy and convergence speed than EKF and UKF. The new filter proves to have asymptotic stability.
Full-Text [PDF 893 kb]   (1330 Downloads)    
Type of Article: Research paper | Subject: Special
Received: 2021/05/25 | Accepted: 2021/08/5 | ePublished ahead of print: 2021/10/10 | Published: 2023/11/4

References
1. [1] N. Nagui et al., "Improved GPS/IMU Loosely Coupled Integration Scheme Using Two Kalman Filter-based Cascaded Stages", Arabian Journal for Science and Engineering, vol. 46, no. 2, pp. 1345-1367, 2021. [DOI:10.1007/s13369-020-05144-8]
2. [2] N. A. Anbu and D. Jayaprasanth. "Integration of Inertial Navigation System with Global Positioning System using Extended Kalman Filter", in International Conference on Smart Systems and Inventive Technology, IEEE, 2019. [DOI:10.1109/ICSSIT46314.2019.8987949]
3. [3] H. Rahimi and A. A. Nikkhah, "Improving the speed of initial alignment for marine strapdown inertial navigation systems using heading control signal feedback in extended Kalman filter", International Journal of Advanced Robotic Systems, vol. 17, no. 1, 2020. [DOI:10.1177/1729881419894849]
4. [4] F. Farhangian and R. Landry, "Accuracy improvement of attitude determination systems using EKF-based error prediction filter and PI controller", Sensors, vol. 20, no. 14, pp. 4055, 2020. [DOI:10.3390/s20144055]
5. [5] W. Liu and et al., "TLIO: Tight Learned Inertial Odometry". IEEE Robotics and Automation Letters, vol. 5, no. 4, pp. 5653-5660, 2020. [DOI:10.1109/LRA.2020.3007421]
6. [6] S. Song and J. Wu, "Motion State Estimation of Target Vehicle under Unknown Time-Varying Noises Based on Improved Square-Root Cubature Kalman Filter", Sensors, vol. 20, no. 9, pp. 2620, 2020. [DOI:10.3390/s20092620]
7. [7] I. Hashlamon, "A new adaptive extended Kalman filter for a class of nonlinear systems", Journal of Applied and Computational Mechanics, vol. 6, no. 1, pp. 1-12, 2020.
8. [8] K. H. Kim et al., "The stability analysis of the adaptive fading extended Kalman filter using the innovation covariance", international journal of control, automation and systems, vol. 7, no. 1, pp. 49-56, 2009. [DOI:10.1007/s12555-009-0107-x]
9. [9] A. Daid, E. Busvelle, and M. Aidene, "On the convergence of the unscented Kalman filter", European Journal of Control, vol.57, pp. 125-134, 2021. [DOI:10.1016/j.ejcon.2020.05.003]
10. [10] M. Boutayeb, H. Rafaralahy, and M. Darouach, "Convergence analysis of the extended Kalman filter used as an observer for nonlinear deterministic discrete-time systems", IEEE transactions on automatic control, vol. 42, no. 4, pp. 581-586, 1997. [DOI:10.1109/9.566674]
11. [11] K. Reif and R. Unbehauen, "The extended Kalman filter as an exponential observer for nonlinear systems", IEEE Transactions on Signal processing, vol. 47, no. 8, pp. 2324-2328, 1999. [DOI:10.1109/78.774779]
12. [12] K. Reif et al., "Stochastic stability of the discrete-time extended Kalman filter", IEEE Transactions on Automatic control, vol. 44, no. 4, pp. 714-728, 1999. [DOI:10.1109/9.754809]
13. [13] T. Karvonen et al., "On Stability of a Class of Filters for Nonlinear Stochastic Systems", SIAM Journal on Control and Optimization, vol. 58, no. 4, pp. 2023-2049, 2020. [DOI:10.1137/19M1285974]
14. [14] M. Ren, Q. Zhang, and J. Zhang, "An introductory survey of probability density function control", Systems Science & Control Engineering, vol. 7, no. 1, pp. 158-170, 2019. [DOI:10.1080/21642583.2019.1588804]
15. [15] Q. Zhang, "Performance enhanced Kalman filter design for non-Gaussian stochastic systems with data-based minimum entropy optimisation", AIMS Electronics and Electrical Engineering, vol. 3, no. 4, pp. 382-396, 2019. [DOI:10.3934/ElectrEng.2019.4.382]
16. [16] N. Ghahramani and F. Towhidkhah, "Constrained incremental predictive controller design for a flexible joint robot", ISA transactions, vol. 48, no. 3, pp. 321-326, 2009. [DOI:10.1016/j.isatra.2009.01.010]
17. [17] N. Ghahramani, A. Naghash, and F. Towhidkhah, "Incremental Predictive Command of Velocity to Be Gained Guidance Method", JAST, vol. 5, no. 3, pp. 99-105, 2008.
18. [18] K.R. Britting, Inertial navigation systems analysis, Johan Wiley and Sons. Inc, New York, 1971.
19. [19] D. Titterton, J.L. Weston, and J. Weston, Strapdown inertial navigation technology, IET, Vol. 17, 2004. [DOI:10.1049/PBRA017E]
20. [20] ADIS16488A, Tactical Grade Ten Degrees of Freedom Inertial Sensor, Analog Devices, "http://www.analog.com", access: 2018.
21. [21] س. ظهیری، م. نصیری، ر. هاونگی، ح. الیاسی، "طراحی یک فیلتر تلفیق غیرخطی بهینه مبتنی بر الگوریتم بهینه سازی گروه ذرات برای سیستم ناوبری تلفیقی INS/GPS"، فصلنامه علمی دریا فنون، دوره 5، شماره 3، صفحه 1-17،2018.

Add your comments about this article : Your username or Email:
CAPTCHA

Send email to the article author


Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

© 2024 CC BY-NC 4.0 | Journal of Control

Designed & Developed by : Yektaweb