Volume 17, Issue 1 (Journal of Control, V.17, N.1 Spring 2023)                   JoC 2023, 17(1): 17-33 | Back to browse issues page

XML Persian Abstract Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Mahmoudi F, Abbasian Najafabadi T, Moarefianpour A. Nonlinear Dynamic Modeling and Parameter Identification of Power Boiler: A Case Study. JoC 2023; 17 (1) :17-33
URL: http://joc.kntu.ac.ir/article-1-977-en.html
1- Science and Research Branch, Islamic Azad University
2- University of Tehran
Abstract:   (1030 Views)
The 320 MW boiler of Bandar Abbas power plant has been subjected to parametric variations due to its long lifespan and numerous renovations, so a relatively accurate dynamic model is needed to retune the characteristics of its control system, simulate events, and evaluate and optimize its performance. Due to the lack of standard models for boilers with different structures, this paper deals with the modeling of this forced circulation subcritical boiler. As a result, a ninth order multivariable nonlinear state space model is developed using the physical modeling method. Due to the limitation of the measured variables and the lack of sufficient data with dynamic specifications suitable for identification algorithms, a computational procedure that uses only steady state measurements of the process is introduced to determine the unknown parameters of the model. The resulting model presents reasonable step responses and its ability in predicting the boiler outputs is confirmed using the operational data of the power plant during a sudden gas fuel pressure reduction event. Finally, the accuracy of its parameters is evaluated by performing sensitivity analysis.
Full-Text [PDF 1943 kb]   (251 Downloads)    
Type of Article: Research paper | Subject: Special
Received: 2023/05/7 | Accepted: 2023/06/19 | ePublished ahead of print: 2023/06/20 | Published: 2023/06/22

References
1. [1] D. Wang, Y. Zhou, and X. Li, "A dynamic model used for controller design for fast cut back of coal-fired boiler-turbine plant," Energy, vol. 144, pp. 526-534, 2018. [DOI:10.1016/j.energy.2017.12.053]
2. [2] L. Sun, D. Li, K. Y. Lee, and Y. Xue, "Control-oriented modeling and analysis of direct energy balance in coal-fired boiler-turbine unit," Control Engineering Practice, vol. 55, pp. 38-55, 2016. [DOI:10.1016/j.conengprac.2016.06.013]
3. [3] J. Kortela and S. L. Jämsä-Jounela, "Modeling and model predictive control of the BioPower combined heat and power (CHP) plant," International Journal of Electrical Power & Energy Systems, vol. 65, pp. 453-462, 2015. [DOI:10.1016/j.ijepes.2014.10.043]
4. [4] R. Seeber, M. Gölles, N. Dourdoumas, and M. Horn, "Reference shaping for model-based control of biomass grate boilers," Control Engineering Practice, vol. 82, pp. 173-184, 2019. [DOI:10.1016/j.conengprac.2018.10.006]
5. [5] T. Gu, W. Ma, Z. Guo, T. Berning, and C. Yin, "Stable and clean co-combustion of municipal sewage sludge with solid wastes in a grate boiler: A modeling-based feasibility study," Fuel, vol. 328, p. 125237, 2022/11/15/ 2022. [DOI:10.1016/j.fuel.2022.125237]
6. [6] T. Henrion, K. Ponweiser, D. Band, and T. Telgen, "Dynamic simulation of a solar power plant steam generation system," Simulation Modelling Practice and Theory, vol. 33, pp. 2-17, 2013. [DOI:10.1016/j.simpat.2011.12.009]
7. [7] Q. Zhang, Z. Wang, X. Du, G. Yu, and H. Wu, "Dynamic simulation of steam generation system in solar tower power plant," Renewable Energy, vol. 135, pp. 866-876, 2019. [DOI:10.1016/j.renene.2018.12.064]
8. [8] R. Kumar, "Thermodynamic Modeling and Validation of a 210-MW Capacity Coal-Fired Power Plant," Iranian Journal of Science and Technology, Transactions of Mechanical Engineering, vol. 40, no. 3, pp. 233-242, 2016. [DOI:10.1007/s40997-016-0025-5]
9. [9] P. Keadtipod and D. Banjerdpongchai, "Design of Supervisory Cascade Model Predictive Control for Industrial Boilers," in International Automatic Control Conference (CACS), Taichung, Taiwan, 2016. [DOI:10.1109/CACS.2016.7973895]
10. [10] D. Li, T. Chen, H. J. Marquez, and R. K. Gooden, "Life extending control of boiler-turbine systems via model predictive methods," Control Engineering Practice, vol. 14, no. 4, pp. 319-326, 2006. [DOI:10.1016/j.conengprac.2004.12.002]
11. [11] M. E. Flynn and M. J. O'Malley, "A Drum Boiler Model for Long Term Power System Dynamic Simulation," IEEE Transactions on Power Systems, vol. 14, pp. 209-217, 1999. [DOI:10.1109/59.744528]
12. [12] J. Zhu, X. Wu, and J. Shen, "Practical disturbance rejection control for boiler-turbine unit with input constraints," Applied Thermal Engineering, vol. 161, 2019. [DOI:10.1016/j.applthermaleng.2019.114184]
13. [13] W. Tan, H. J. Marquez, T. Chen, and J. Liu, "Analysis and control of a nonlinear boiler-turbine unit," Journal of Process Control, vol. 15, no. 8, pp. 883-891, 2005. [DOI:10.1016/j.jprocont.2005.03.007]
14. [14] K. J. Astrom and R. D. Bell, "Drum-boiler dynamics," Automatica, vol. 36, pp. 363-378, 2000. [DOI:10.1016/S0005-1098(99)00171-5]
15. [15] L. Xu, L. Cheng, J. Ji, Q. Wang, and M. Fang, "A comprehensive CFD combustion model for supercritical CFB boilers," Particuology, vol. 43, pp. 29-37, 2019. [DOI:10.1016/j.partic.2017.11.012]
16. [16] T. Ye, M. Dong, J. Long, Y. Zheng, Y. Liang, and J. Lu, "Multi-objective modeling of boiler combustion based on feature fusion and Bayesian optimization," Computers & Chemical Engineering, vol. 165, p. 107913, 2022/09/01/ 2022. [DOI:10.1016/j.compchemeng.2022.107913]
17. [17] H. Hajebzadeh, A. N. M. Ansari, and S. Niazi, "Mathematical modeling and validation of a 320 MW tangentially fired boiler: A case study," Applied Thermal Engineering, vol. 146, pp. 232-242, 2019. [DOI:10.1016/j.applthermaleng.2018.09.102]
18. [18] M. Lawrynczuk, "Nonlinear predictive control of a boiler-turbine unit: A state-space approach with successive on-line model linearisation and quadratic optimisation," ISA transactions, vol. 67, pp. 476-495, Mar 2017. [DOI:10.1016/j.isatra.2017.01.016]
19. [19] L. Gao and Y. Dai, "A New Linear Model of Fossil Fired Steam Unit for Power System Dynamic Analysis," IEEE Transactions on Power Systems, vol. 26, no. 4, pp. 2390-2397, 2011. [DOI:10.1109/TPWRS.2011.2146284]
20. [20] K. J. Astrom and K. Eklund, "A simplified non-linear model of a drum boiler-turbine unit," International Journal of Control, vol. 16, no. 1, pp. 145-169, 1972. [DOI:10.1080/00207177208932249]
21. [21] H. Kim and S. Choi, "A model on water level dynamics in natural circulation drum-type boilers," International Communications in Heat and Mass Transfer, vol. 32, no. 6, pp. 786-796, 2005. [DOI:10.1016/j.icheatmasstransfer.2004.10.010]
22. [22] A. Chaibakhsh, A. Ghaffari, and S. A. A. Moosavian, "A simulated model for a once-through boiler by parameter adjustment based on genetic algorithms," Simulation Modelling Practice and Theory, vol. 15, no. 9, pp. 1029-1051, 2007. [DOI:10.1016/j.simpat.2007.06.004]
23. [23] J. Taler et al., "Mathematical model of a supercritical power boiler for simulating rapid changes in boiler thermal loading," Energy, vol. 175, pp. 580-592, 2019. [DOI:10.1016/j.energy.2019.03.085]
24. [24] S. M. Safdarnejad, J. F. Tuttle, and K. M. Powell, "Dynamic modeling and optimization of a coal-fired utility boiler to forecast and minimize NOx and CO emissions simultaneously," Computers & Chemical Engineering, vol. 124, pp. 62-79, 2019. [DOI:10.1016/j.compchemeng.2019.02.001]
25. [25] L. Ma, Y. Lin, and K. Y. Lee, "Superheater Steam Temperature Control for a 300MW Boiler Unit with Inverse Dynamic Process Models," presented at the Power and Energy Society General Meeting, Minneapolis, MN, 25-29 July 2010, 2010.
26. [26] C. Sreepradha, R. C. Panda, and N. S. Bhuvaneswari, "Mathematical model for integrated coal fired thermal boiler using physical laws," Energy, vol. 118, pp. 985-998, 2017. [DOI:10.1016/j.energy.2016.10.127]
27. [27] S. Aliakbari, M. Ayati, J. H. S. Osman, and Y. Md Sam, "Second-order sliding mode fault-tolerant control of heat recovery steam generator boiler in combined cycle power plants," Applied Thermal Engineering, vol. 50, no. 1, pp. 1326-1338, 2013. [DOI:10.1016/j.applthermaleng.2012.04.054]
28. [28] Y. Niu, M. Du, W. Ge, H. Luo, and G. Zhou, "A dynamic nonlinear model for a once-through boiler-turbine unit in low load," Applied Thermal Engineering, vol. 161, 2019. [DOI:10.1016/j.applthermaleng.2019.113880]
29. [29] D. S. Carrasco, G. C. Goodwin, and R. D. Peirce, "Novel modelling for a steam boiler under fast load dynamics with implications to control," Automatica, vol. 156, p. 111184, 2023/10/01/ 2023. [DOI:10.1016/j.automatica.2023.111184]
30. [30] S. Barsali, A. D. Marco, G. M. Giannuzzi, F. Mazzoldi, A. Possenti, and R. Zaottini, "Modeling Combined Cycle Power Plants for Power System Restoration Studies," IEEE Transactions on Energy Conversion vol. 27, no. 2, pp. 340-350, 2012. [DOI:10.1109/TEC.2012.2188406]
31. [31] X. Wu, J. Shen, Y. Li, and K. Y. Lee, "Fuzzy modeling and stable model predictive tracking control of large-scale power plants," Journal of Process Control, vol. 24, no. 10, pp. 1609-1626, 2014. [DOI:10.1016/j.jprocont.2014.08.007]
32. [32] W. Zima, S. Grądziel, A. Cebula, M. Rerak, E. Kozak-Jagieła, and M. Pilarczyk, "Mathematical model of a power boiler operation under rapid thermal load changes," Energy, vol. 263, p. 125836, 2023/01/15/ 2023. [DOI:10.1016/j.energy.2022.125836]
33. [33] E. Oko and M. Wang, "Dynamic modelling, validation and analysis of coal-fired subcritical power plant," Fuel, vol. 135, pp. 292-300, 2014. [DOI:10.1016/j.fuel.2014.06.055]
34. [34] A. Sumalatha, K. S. Rani, and C. Jayalakshmi, "Dynamic modeling of Boiler drum using nonlinear system identification approach," Measurement: Sensors, vol. 28, p. 100845, 2023/08/01/ 2023. [DOI:10.1016/j.measen.2023.100845]
35. [35] L. Ferrarini, S. Rastegarpour, and A. Landi, "Experimental model validation and predictive control strategy for an industrial fire-tube boiler," Thermal Science and Engineering Progress, vol. 36, p. 101482, 2022/12/01/ 2022. [DOI:10.1016/j.tsep.2022.101482]
36. [36] W. Xu, Y. Huang, S. Song, B. Chen, and X. Qi, "A novel online combustion optimization method for boiler combining dynamic modeling, multi-objective optimization and improved case-based reasoning," Fuel, vol. 337, p. 126854, 2023/04/01/ 2023. [DOI:10.1016/j.fuel.2022.126854]
37. [37] C. Maffezzoni, "Boiler-Turbine Dynamics in Power-Plant Control," Control Engineering Practice, vol. 5, no. 3, pp. 301-312, 1997. [DOI:10.1016/S0967-0661(97)00007-5]
38. [38] J. B. Kitto and S. C. Stultz, J. B. Kitto and S. C. Stultz, Eds. Steam, its generation and use, 41 ed. U.S.A.: Babcock and Wilcox Company, 2005.
39. [39] S. Kakaç, Boilers, Evaporators, and Condensers. John Wiley & Sons, Inc., 1991.
40. [40] Thermodynamic Properties of Water and Steam, The International Association for the Properties of Water and Steam, August 2007.
41. [41] A. Saltelli et al., Global Sensitivity Analysis. The Primer. England: John Wiley & Sons Ltd, 2008.

Add your comments about this article : Your username or Email:
CAPTCHA

Send email to the article author


Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

© 2024 CC BY-NC 4.0 | Journal of Control

Designed & Developed by : Yektaweb