دوره 18، شماره 2 - ( مجله کنترل، جلد 18، شماره 2، تابستان 1403 )                   جلد 18 شماره 2,1403 صفحات 36-25 | برگشت به فهرست نسخه ها

XML English Abstract Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Katoozian D, Hosseini-Nejad H, Abolghasemi M. A Neural Decoding Method Based on Neurons Activities Pattern Recognition for Implantable Intra-cortical BMIs. JoC 2024; 18 (2) :25-36
URL: http://joc.kntu.ac.ir/article-1-1015-fa.html
کاتوزیان دانیال، حسینی نژاد محبتی حسین، ابوالقاسمی محمد رضا. ارائه رویکرد رمزگشایی عصبی برپایه تشخیص الگوی فعالیت‌های عصبی برای یک سیستم رابط مغز و ماشین قابل کاشت در بدن درون قشری. مجله کنترل. 1403; 18 (2) :25-36

URL: http://joc.kntu.ac.ir/article-1-1015-fa.html


1- آزمایشگاه FPGA، دانشکده مهندسی برق، دانشگاه صنعتی خواجه نصیرالدین طوسی، تهران، ایران
2- آزمایشگاه سیستم های شناختی، مرکز تعالی کنترل و پردازش هوشمند، دانشکده مهندسی برق و کامپیوتر، دانشکده فنی دانشگاه تهران
چکیده:   (2276 مشاهده)
در بحث رابط مغز و ماشین، به عمل تشخیص و تبدیل تصمیمات مغز به دستوراتی که قابل درک برای ماشین باشد، رمزگشایی گفته می-شود. با وجود پیشرفت¬های بدست آمده در حوزه رابط مغز و ماشین، رمزگشایی همچنان یکی از مباحث چالش بر‌‌انگیز بوده است. بعلاوه، بسیاری از روش های پیشنهادی به دلیل حجم محاسباتی بالای خود به پردازنده ای مانند رایانه جهت اجرای الگوریتم های خود نیاز دارند. این دسته از رویکردها به دلیل حجم و توان مصرفی رایانه ها رویکردی عملی برای یک سیستم رابط مغز و ماشین قابل کاشت در بدن به حساب نمی آیند. برای رفع این مشکلات در پژوهش پیشرو از یک رویکر نوین با الهام از روش محاسبات ابر بعدی استفاده شده است. به شکل خلاصه در این روش ابتدا فضای ورودی به یک بردار صفر و یک تبدیل می شود که در گام بعدی به وسیله یک الگوریتم مقایسه، شبیه ترین الگو به فضا های خروجی به عنوان خروجی نهایی انتخاب می شود. روش پیشنهادی به کمک بانک داده ای ثبت شده از ناحیه جلوی چشم (Frontal Eye Field) از دو میمون مذکر (rhesus) که در یک تست نگاه کردن به اهداف در 8 زاویه شرکت داشته‌اند ارزیابی شده است. نتایج حاکی از دقت بدست آمده 51.5 درصد با حجم محاسباتی بسیار پایین است. از طرفی دیگر با پیاده سازی رویکرد پیشنهادی بر روی یک آرایه‌ی دروازه‌ی میدانی برنامه‌پذیر (FPGA) نشان داده شد این روش یک سیستم رابط مغز و ماشین بلادرنگ قابل کاشت در بدن با حجم محاسباتی بسیار پایین با دقتی متوسط است.
متن کامل [PDF 864 kb]   (180 دریافت)    
نوع مطالعه: پژوهشي | موضوع مقاله: تخصصي
دریافت: 1402/9/19 | پذیرش: 1402/12/23 | انتشار الکترونیک پیش از انتشار نهایی: 1403/2/15 | انتشار: 1403/6/30

فهرست منابع
1. [ ]. Shaikh S, So R, Sibindi T, Libedinsky C, Basu A., "Towards Intelligent Intracortical BMI (i2BMI): Low-Power Neuromorphic Decoders That Outperform Kalman Filters," IEEE Transactions on Biomedical Circuits and Systems, vol. 13, no. 6, pp. 1615-1624, Dec. 2019. doi: 10.1109/TBCAS.2019.2944486. [DOI:10.1109/TBCAS.2019.2944486]
2. [ ]. Armour BS, Courtney-Long EA, Fox MH, Fredine H, Cahill A., "Prevalence and causes of paralysis-United States, 2013," American journal of public health, vol. 106, no. 10, pp. 1855-1857, 2016. [DOI:10.2105/AJPH.2016.303270]
3. [ ]. Shen X, Zhang X, Huang Y, Chen S, Yu Z, Wang Y., "Intermediate Sensory Feedback Assisted Multi-Step Neural Decoding for Reinforcement Learning Based Brain-Machine Interfaces," IEEE Transactions on Neural Systems and Rehabilitation Engineering, vol. 30, pp. 2834-2844, doi: 10.1109/TNSRE.2022.3210700, 2022. [DOI:10.1109/TNSRE.2022.3210700]
4. [ ]. García-Murillo DG, Álvarez-Meza AM, Castellanos-Dominguez CG. "KCS-FCnet: Kernel Cross-Spectral Functional Connectivity Network for EEG-Based Motor Imagery Classification" Diagnostics, vol. 13, no. 6, 2023 Mar 16. [DOI:10.3390/diagnostics13061122]
5. [ ]. Birbaumer N, Ghanayim N, Hinterberger T, Iversen I, Kotchoubey B, Kübler A, Perelmouter J, Taub E, Flor H., "A spelling device for the paralyzed," Nature, vol. 398, no. 6725, pp. 297-298, 1999. [DOI:10.1038/18581]
6. [ ]. Perdikis S, Leeb R, Williamson J, Ramsay A, Tavella M, Desideri L, Hoogerwerf EJ, Al-Khodairy A, Murray-Smith R, d R Millán J., "Clinical evaluation of BrainTree, a motor imagery hybrid BCI speller," Journal of neural engineering, vol. 11, no. 3, 2014. [DOI:10.1088/1741-2560/11/3/036003]
7. [ ]. Collinger JL, Wodlinger B, Downey JE, Wang W, Tyler-Kabara EC, Weber DJ, McMorland AJ, Velliste M, Boninger ML, Schwartz AB., "High-performance neuroprosthetic control by an individual with tetraplegia," The Lancet, vol. 381, no. 9866, pp. 557-564, 2013. [DOI:10.1016/S0140-6736(12)61816-9]
8. [ ]. Galán F,Nuttin M, Lew E, Ferrez PW, Vanacker G, Philips J,Millán JD., "A brain-actuated wheelchair: Asynchronous and non-invasive Brain-computer interfaces for continuous control of robots," Clinical neurophysiology, vol. 119, no. 9, pp. 2159-2169, 2008. [DOI:10.1016/j.clinph.2008.06.001]
9. [ ]. Leeb R, Tonin L, Rohm M, Desideri L, Carlson T, Millan JD. "Towards independence: A BCI telepresence robot for people with severe motor disabilities," Proceedings of the IEEE, vol. 103, no. 6, pp. 969-982, 2015. [DOI:10.1109/JPROC.2015.2419736]
10. [ ] Sharma R, Kim M, Gupta A., "Motor imagery classification in brain-machine interface with machine learning algorithms: Classical approach to multi-layer perceptron model." Biomedical Signal Processing and Control, vol. 71, 2022. [DOI:10.1016/j.bspc.2021.103101]
11. [ ]. Sui Y, Yu H, Zhang C, Chen Y, Jiang C, Li L., "Deep brain-machine interfaces: sensing and modulating the human deep brain," National Science Review, vol. 9, no. 10, October 2022. [DOI:10.1093/nsr/nwac212]
12. [ ]. Syrov N, Yakovlev L, Nikolaeva V, Kaplan A, Lebedev M. "Mental Strategies in a P300-BCI: Visuomotor Transformation Is an Option. " Diagnostics., vol. 12, no. 11, 2022 Oct 27. [DOI:10.3390/diagnostics12112607]
13. [ ]. Zhang Z, Constandinou TG., "Firing-rate-modulated spike detection and neural decoding co-design." Journal of Neural Engineering, vol. 20, no. 3, 2023. [DOI:10.1088/1741-2552/accece]
14. [ ]. Kim KH, Kim SJ., "Neural spike sorting under nearly 0-db signalto- noise ratio using nonlinear energy operator and artificial neural-network classifier." IEEE Transactions on Biomedical Engineering, vol. 47, no. 10, pp. 1406-1411, 2000. [DOI:10.1109/10.871415]
15. [ ]. Okreghe CO, Zamani M, Demosthenous A., "A Deep Neural Network-Based Spike Sorting with Improved Channel Selection and Artefact Removal," IEEE Access, vol. 11, pp. 15131-15143, doi: 10.1109/ACCESS.2023.3242643, 2023 [DOI:10.1109/ACCESS.2023.3242643]
16. [ ]. Kalantari F, Hosseini-Nejad H, Sodagar AM., "Hardware-Efficient, On-the-Fly, On-Implant Spike Sorter Dedicated to Brain-Implantable Microsystems," IEEE Transactions on Very Large Scale Integration (VLSI) Systems, vol. 30, no. 8, pp. 1098-1106, doi: 10.1109/TVLSI.2022.3170596, Aug. 2022 [DOI:10.1109/TVLSI.2022.3170596]
17. [ ]. Soleymankhani A, Shalchyan V. , "A new spike sorting algorithm based on continuous wavelet transform and investigating its effect on improving neural decoding accuracy." Neuroscience, vol. 468, pp. 139-48, 2021Aug 1. [DOI:10.1016/j.neuroscience.2021.05.036]
18. [ ]. Sukiban J, Voges N, Dembek TA, Pauli R, Visser-Vandewalle V, Denker M, Weber I, Timmermann L, Grün S., "Evaluation of spike sorting algorithms: application to human subthalamic nucleus recordings and simulations." Neuroscience., vol. 414, pp. 168-85, 2019 Aug 21. [DOI:10.1016/j.neuroscience.2019.07.005]
19. [ ]. Dong Y, Hu D, Wang S, He J., "Decoder calibration framework for intracortical brain-computer interface system via domain adaptation." Biomedical Signal Processing and Control., vol. 81, 2023. [DOI:10.1016/j.bspc.2022.104453]
20. [ ]. Katoozian D, Hosseini-Nejad H, Abolghasemi Dehaqani MR, Shoeibi A, Manuel Gorriz J., "A hardware efficient intra-cortical neural decoding approach based on spike train temporal information." Integrated Computer-Aided Engineering, (Preprint):1-5, 2022. [DOI:10.3233/ICA-220687]
21. [ ]. Chen Y, Yao E, Basu A., "A 128-Channel Extreme Learning Machine-Based Neural Decoder for Brain Machine Interfaces." IEEE Transactions on biomedical circuits and Systems, vol. 10, no. 3, pp. 679-692, 2015. [DOI:10.1109/TBCAS.2015.2483618]
22. [ ]. Dayan P, Abbott LF. "Theoretical Neuroscience: Computational and Mathematical Modeling of Neural Systems." MIT press; 2005 Aug 12.
23. [ ]. Rieke F, Warland D, Van Steveninck RD, Bialek W. "Spikes: Exploring the Neural Code." MIT press; 1999 Jul 26.
24. [ ]. Pan H, Mi W, Lei X, Zhong W. "A closed-loop BMI system design based on the improved SJIT model and the network of Izhikevich neurons." Neurocomputing, vol. 401, pp. 271-280. 2020. [DOI:10.1016/j.neucom.2020.03.047]
25. [ ]. Ahmadi N, Constandinou TG, Bouganis CS., "Robust and accurate decoding of hand kinematics from entire spiking activity using deep learning." Journal of Neural Engineering, vol. 18, no. 2, 2021. [DOI:10.1088/1741-2552/abde8a]
26. [ ]. Wu H, Feng J, Zeng Y. "Neural Decoding for Macaque's Finger Position: Convolutional Space Model." IEEE Transactions on Neural Systems and Rehabilitation Engineering, vol. 27, no. 3, pp. 543-551, 2019. [DOI:10.1109/TNSRE.2019.2893406]
27. [ ]. Pan H, Mi W, Lei X, Deng J. "A closed-loop brain-machine interface framework design for motor rehabilitation." Biomedical Signal Processing and Control, vol. 58, 2020. [DOI:10.1016/j.bspc.2020.101877]
28. [ ]. Dehaqani MR, Vahabie AH, Parsa M, Noudoost B, Soltani A., "Selective Changes in Noise Correlations Contribute to an Enhanced Representation of Saccadic Targets in Prefrontal Neuronal Ensembles." Cereb Cortex, vol. 28, no. 8, pp. 3046-3063, 2018. [DOI:10.1093/cercor/bhy141]
29. [ ]. Li C, Zhang Y, Wang T, Xu X, Wang Q, Xu B, Cui H., "Generative Decoding of Intracortical Neuronal Signals for Online Control of Robotic Arm to Intercept Moving Objects," Journal of Physics: Conference Series, vol. 576, no. 1. IOP Publishing, 2020. [DOI:10.1088/1742-6596/1576/1/012057]
30. [ ]. Li C, Wang T, Zhang Y, Xu X, Wang Q, Zheng R, Cui H., "Serial Decoding of Macaque Intracortical Activity for Feedforward Control of Coherent Sequential Reach." 2021 10th International IEEE/EMBS Conference on Neural Engineering, pp. 49-52, 2021. [DOI:10.1109/NER49283.2021.9441209]
31. [ ]. Baggenstoss PM. " On the Duality Between Belief Networks and Feed-Forward Neural Networks." IEEE Transactions on Neural Networks and learning systems, vol. 30, no. 31, pp. 190-200, 2019. [DOI:10.1109/TNNLS.2018.2836662]
32. [ ]. Taeckens E, Dong R, Shah S., "A Biologically Plausible Spiking Neural Network for Decoding Kinematics in the Hippocampus and Premotor Cortex." 2023 11th International IEEE/EMBS Conference on Neural Engineering, pp. 1-4, 2023. [DOI:10.1109/NER52421.2023.10123745]
33. [ ]. Zhang P, Chao L, Chen Y, Ma X, Wang W, He J, Huang J, Li Q., "Reinforcement Learning Based Fast Self-Recalibrating Decoder for Intracortical Brain-Machine Interface." Sensors, vol. 20, no. 19, 2020. [DOI:10.3390/s20195528]
34. [ ]. Sarić R, Jokić D, Beganović N, Pokvić LG, Badnjević A. "FPGA-based real-time epileptic seizure classification using Artificial Neural Network." Biomedical Signal Processing and Control, vol. 62, 2020. [DOI:10.1016/j.bspc.2020.102106]
35. [ ]. Bair W, Koch C. "Temporal precision of spike trains in extrastriate cortex of the behaving macaque monkey." Neural computation, vol. 8, no. 6, pp. 1185-1202, 1996. [DOI:10.1162/neco.1996.8.6.1185]
36. [ ]. Buracas GT, Zador AM, DeWeese MR, Albright TD. "Efficient discrimination of temporal patterns by motion-sensitive neurons in primate visual cortex." Neuron, vol. 20, no. 5, pp. 959-969, 1998. [DOI:10.1016/S0896-6273(00)80477-8]
37. [ ]. Salinas E, Sejnowski TJ. "Correlated neuronal activity and the flow of neural information.", Nature reviews neuroscience, vol. 2, no. 8, pp. 539-550, 2001. [DOI:10.1038/35086012]
38. [ ]. Chew G, Ang KK, So RQ, Xu Z, Guan C., "Combining Firing Rate and Spike-Train Synchrony Features in the Decoding of Motor Cortical Activity." 2015 37th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, pp. 1091-1094, 2015. [DOI:10.1109/EMBC.2015.7318555]
39. [ ].Ran X, Zhang S, Sun G, Zhu J, Chen W, Pan G. "Decoding Velocity from Spikes Using a New Architecture of Recurrent Neural Network." 2019 9th International IEEE/EMBS Conference on Neural Engineering, pp. 231-234, 2019. [DOI:10.1109/NER.2019.8716895]
40. [ ]. Glaser JI, Benjamin AS, Chowdhury RH, Perich MG, Miller LE, Kording KP., "Machine learning for neural decoding." Eneuro, vol. 7, no. 4, 2020. [DOI:10.1523/ENEURO.0506-19.2020]
41. [ ]. Heelan C, Nurmikko AV, Truccolo W., "FPGA implementation of deep-learning recurrent neural networks with sub-millisecond real-time latency for BCI-decoding of large-scale neural sensors (104 nodes)." 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, pp. 1070-1073, 2018. [DOI:10.1109/EMBC.2018.8512415]
42. [ ]. Stevenson IH, Kording KP. "How advances in neural recording affect data analysis." Nature neuroscience, vol. 14, no. 2, pp. 139-142, 2011. [DOI:10.1038/nn.2731]
43. [ ]. Ahmadi-Dastgerdi N, Hosseini-Nejad H, Amiri H, Shoeibi A, Gorriz JM. "A vector quantization-based spike compression approach dedicated to multichannel neural recording microsystems." International Journal of Neural Systems, vol. 32, no. 03, 2022. [DOI:10.1142/S0129065722500010]
44. [ ]. Thomas A, Dasgupta S, Rosing T. "A theoretical perspective on hyperdimensional computing." Journal of Artificial Intelligence Research, vol. 72, pp. 215-249, 2021. [DOI:10.1613/jair.1.12664]
45. [ ]. Karunaratne G, Le Gallo M, Cherubini G, Benini L, Rahimi A, Sebastian A. "In-memory hyperdimensional computing." Nature Electronics, vol. 3, no. 6, pp. 327-337, 2020. [DOI:10.1038/s41928-020-0410-3]
46. [ ]. Ge L, Parhi KK. "Classification using hyperdimensional computing: A review." IEEE Circuits and Systems Magazine, vol. 20, no. 2, pp. 30-47, 2020. [DOI:10.1109/MCAS.2020.2988388]
47. [ ] . Buccino AP, Garcia S, Yger P. "Spike sorting: new trends and challenges of the era of high-density probes." Progress in Biomedical Engineering, vol. 4, no. 2, 2022. [DOI:10.1088/2516-1091/ac6b96]
48. [ ]. Burrello A, Cavigelli L, Schindler K, Benini L, Rahimi A., "Laelaps: An Energy-Efficient Seizure Detection Algorithm from Long-term Human iEEG Recordings without False Alarms," 2019 Design, Automation & Test in Europe Conference & Exhibition, pp. 752-757, 2019. [DOI:10.23919/DATE.2019.8715186]
49. [ ]. Du Y, Sun HQ, Tian Q, Zhang SY, Wang C., "Design of blender IMC control system based on simple recurrent networks," 2009 International Conference on Machine Learning and Cybernetics, vol. 2, pp. 1048-1052, 2009. [DOI:10.1109/ICMLC.2009.5212450]
50. [ ]. Heck J, Salem FM., "Simplified minimal gated unit variations for recurrent neural networks," IEEE 60th International Midwest Symposium on Circuits and Systems, 2017. [DOI:10.1109/MWSCAS.2017.8053242]
51. [ ]. Zviagintsev A, Perelman Y, Ginosar R., "Low-power architectures for spike sorting," 2nd International IEEE EMBS Conference on Neural Engineering, pp. 162-165, 2005. [DOI:10.1109/CNE.2005.1419579]
52. [ ]. Zhou F, Liu J, Yu Y, Tian X, Liu H, Hao Y, Zhang S, Chen W, Dai J, Zheng X., "Field-programmable gate array implementation of a probabilistic neural network for motor cortical decoding in rats," Journal of Neuroscience Methods, vol. 185, no. 2, pp. 299-306, 2010. [DOI:10.1016/j.jneumeth.2009.10.001]

ارسال نظر درباره این مقاله : نام کاربری یا پست الکترونیک شما:
CAPTCHA

ارسال پیام به نویسنده مسئول


بازنشر اطلاعات
Creative Commons License این مقاله تحت شرایط Creative Commons Attribution-NonCommercial 4.0 International License قابل بازنشر است.

کلیه حقوق این وب سایت متعلق به مجله کنترل می باشد.

طراحی و برنامه نویسی : یکتاوب افزار شرق

© 2025 CC BY-NC 4.0 | Journal of Control

Designed & Developed by : Yektaweb