Volume 18, Issue 3 (Journal of Control, V.18, N.3 Fall 2024)                   JoC 2024, 18(3): 23-35 | Back to browse issues page

XML Persian Abstract Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Hatef M, Bagheri P, Hashemzadeh F. Air Traffic Management for UAVs in 2D Airspace using Minimum Time Distributed Predictive Control. JoC 2024; 18 (3) :23-35
URL: http://joc.kntu.ac.ir/article-1-1021-en.html
1- University of Tabriz
2- Control and Automation Engineering Department, Istanbul Technical University, 34469 Istanbul, Turkey
Abstract:   (1172 Views)
From the beginning, aviation has depended on pilots and air traffic controllers working together to control aircraft and avoid collisions. On the other hand, fully autonomous flying devices are currently prohibited from civilian airspace, but researchers are making great efforts to develop methods and technologies to increase the reliability of fully autonomous flights and integration with civilian airspace. Safety in UAV operations depend on reducing technical barriers and improving their autonomous capabilities. In this paper, a collision resolution algorithm based on predictive control is introduced in a multi-UAV scenario to calculate and introduce the predicted path with the least mission completion time. Then, a collision avoidance system is designed based on a distributed MPC for trajectory tracking, where anti-collision constraints are defined in accordance with ICAO right-of-way rules. The simulation results show that the proposed design can solve the conflicts in real time and in a crowded airspace without creating conflicts in the path and secondary collision.
Full-Text [PDF 1059 kb]   (153 Downloads)    
Type of Article: Research paper | Subject: General
Received: 2024/01/28 | Accepted: 2024/07/28 | ePublished ahead of print: 2024/08/29 | Published: 2024/11/21

References
1. [1] G. Picard, "Trajectory Coordination based on Distributed Constraint Optimization Techniques in Unmanned Air Traffic Management," Proceedings of the International Joint Conference on Autonomous Agents and Multiagent Systems, AAMAS, vol. 2, pp. 1065-1073, 2022.
2. [2] J. Pellebergs and S. Aerosystems, "The MIDCAS project," 27th Congr. Int. Counc. Aeronaut. Sci. 2010, ICAS 2010, vol. 4, pp. 3241-3247, 2010.
3. [3] M. Strohmeier, M. Schäfer, V. Lenders, and I. Martinovic, "Realities and challenges of nextgen air traffic management: The case of ADS-B," IEEE Commun. Mag., vol. 52, no. 5, pp. 111-118, 2014, doi: 10.1109/MCOM.2014.6815901. [DOI:10.1109/MCOM.2014.6815901]
4. [4] C. A. Nava-Gaxiola and C. Barrado, "Performance measures of the SESAR Southwest functional airspace block," J. Air Transp. Manag., vol. 50, pp. 21-29, 2016, doi: 10.1016/j.jairtraman.2015.09.003. [DOI:10.1016/j.jairtraman.2015.09.003]
5. [5] L. Bo, C. Song, S. Bai, J. Huang, R. Ma, K. Wan, and E. Neretin, "Multi-UAV trajectory planning during cooperative tracking based on a Fusion Algorithm integrating MPC and standoff." Drones, vol. 7, no. 3, pp. 196-220, 2023, doi: 10.3390/drones7030196. [DOI:10.3390/drones7030196]
6. [6] B. Jiang, B. Li, W. Zhou, L.Y. Lo, C.K. Chen, C.Y. Wen, "Neural Network Based Model Predictive Control for a Quadrotor UAV." Aerospace, vol. 9, no. 8, pp. 460-465, 2022, doi: 10.3390/aerospace9080460. [DOI:10.3390/aerospace9080460]
7. [7] W. Pan, Q. He, Y. Huang, L. Qin, "Four-Dimensional Trajectory Planning for Urban Air Traffic Vehicles Based on Improved RRT Algorithm," IEEE Access, vol. 11, pp. 81113-811123, 2023. [DOI:10.1109/ACCESS.2023.3300374]
8. [8] J. Mercer et al., "Impact of Automation Support on the Conflict Resolution Task in a Human-in-the-Loop Air Traffic Control Simulation," IFAC-PapersOnLine, vol. 49, no. 19, pp. 36-41, 2016, doi: 10.1016/j.ifacol.2016.10.458. [DOI:10.1016/j.ifacol.2016.10.458]
9. [9] E. D'Amato, M. Mattei, and I. Notaro, "Bi-level Flight Path Planning of UAV Formations with Collision Avoidance," J. Intell. Robot. Syst. Theory Appl., vol. 93, no. 1-2, pp. 193-211, 2019, doi: 10.1007/s10846-018-0861-1. [DOI:10.1007/s10846-018-0861-1]
10. [10] J. Dentler et al., "Collision Avoidance Effects on the Mobility of a UAV Swarm Using Chaotic Ant Colony with Model Predictive Control," J. Intell. Robot. Syst. Theory Appl., vol. 93, no. 1-2, pp. 227-243, 2019, doi: 10.1007/s10846-018-0822-8. [DOI:10.1007/s10846-018-0822-8]
11. [11] H. X. Chen, Y. Nan, and Y. Yang, "Real-time conflict resolution algorithm for multi-UAV based on model predict control," Algorithms, vol. 12, no. 2, 2019, doi: 10.3390/a12020047. [DOI:10.3390/a12020047]
12. [12] R. C. Gutiérrez-Urquídez, G. Valencia-Palomo, O. M. Rodríguez-Elias, and L. Trujillo, "Systematic selection of tuning parameters for efficient predictive controllers using a multiobjective evolutionary algorithm," Appl. Soft Comput. J., vol. 31, pp. 326-338, 2015, doi: 10.1016/j.asoc.2015.02.033. [DOI:10.1016/j.asoc.2015.02.033]
13. [13] C. Carbone, U. Ciniglio, F. Corraro, and S. Luongo, "A novel 3D geometric algorithm for aircraft autonomous collision avoidance," Proc. IEEE Conf. Decis. Control, pp. 1580-1585, 2006, doi: 10.1109/cdc.2006.376742. [DOI:10.1109/CDC.2006.376742]
14. [14] E. D'Amato, M. Mattei, and I. Notaro, "Distributed Reactive Model Predictive Control for Collision Avoidance of Unmanned Aerial Vehicles in Civil Airspace," J. Intell. Robot. Syst. Theory Appl., vol. 97, no. 1, pp. 185-203, 2020, doi: 10.1007/s10846-019-01047-5. [DOI:10.1007/s10846-019-01047-5]
15. [15] J. Yoo and S. Devasia, "Application of provably-safe conflict resolution for air traffic control," Proc. IEEE Conf. Decis. Control, pp. 478-483, 2012, doi: 10.1109/CDC.2012.6427035. [DOI:10.1109/CDC.2012.6427035]
16. [16] C. C. Fattori et al., "Analysis Framework for Improved Conflict Prediction in ATC System Modernization," IFAC-PapersOnLine, vol. 50, no. 1, pp. 14650-14655, 2017, doi: 10.1016/j.ifacol.2017.08.1905. [DOI:10.1016/j.ifacol.2017.08.1905]
17. [17] A. Richards and J. How, "Decentralized model predictive control of cooperating UAVs," Proc. IEEE Conf. Decis. Control, vol. 4, pp. 4286-4291, 2004, doi: 10.1109/CDC.2004.1429425. [DOI:10.1109/CDC.2004.1429425]
18. [18] X. Wang, V. Yadav, and S. N. Balakrishnan, "Cooperative UAV formation flying with obstacle/collision avoidance," IEEE Trans. Control Syst. Technol., vol. 15, no. 4, pp. 672-679, 2007, doi: 10.1109/TCST.2007.899191. [DOI:10.1109/TCST.2007.899191]
19. [19] Y. Seifouripour, H. Nobahari, "Model-free control of a fixed-wing aircraft based on convolutional neural networks," Journal of Control, Just Accepted, 2024. [DOI:10.1016/j.jfranklin.2024.106664]
20. [20] FOCA, "Annexes to the Convention on International Civil Aviation (ICAO)," Fed. Off. Aviat., 2020.
21. [21] R. P. Anderson and D. Milutinovic, "A stochastic approach to dubins vehicle tracking problems," IEEE Trans. Automat. Contr., vol. 59, no. 10, pp. 2801-2806, 2014, doi: 10.1109/TAC.2014.2314224. [DOI:10.1109/TAC.2014.2314224]
22. [22] P. K. Menon, G. D. Sweriduk, and B. Sridhar, "Optimal strategies for free flight air traffic conflict resolution," 1997 Guid. Navig. Control Conf., pp. 455-468, 1997, doi: 10.2514/6.1997-3546. [DOI:10.2514/6.1997-3546]
23. [23] A. K. Sedigh, P. Bagheri, "Review of model predictive control tuning methods and modern tuning solutions," Journal of Control, Vol. 3, No. 8, pp. 69-85, 2014.
24. [24] P. Bagheri, "Model Predictive Controller Based on Steady-State Value of Control Signal, Analytically Tuning and Closed-Loop Studies," Journal of Control, Vol. 10, No. 3, pp.39-51, 2016.
25. [25] P. Bagheri, P, "Pole‐zero assignment in model predictive control, using analytical tuning approach," Optimal Control Applications and Methods, Vol. 42, No. 5, pp.1253-1268, 2021. [DOI:10.1002/oca.2724]
26. [26] Y. B. Chen, J. Q. Yu, X. L. Su, and G. C. Luo, "Path Planning for Multi-UAV Formation," J. Intell. Robot. Syst. Theory Appl., vol. 77, no. 1, pp. 229-246, 2015, doi: 10.1007/s10846-014-0077-y. [DOI:10.1007/s10846-014-0077-y]

Add your comments about this article : Your username or Email:
CAPTCHA

Send email to the article author


Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

© 2025 CC BY-NC 4.0 | Journal of Control

Designed & Developed by : Yektaweb