دوره 17، شماره 3 - ( مجله کنترل، جلد 17، شماره 3، پاییز 1402 )                   جلد 17 شماره 3,1402 صفحات 25-13 | برگشت به فهرست نسخه ها


XML English Abstract Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Mehri Arsoon M, Moghaddas-Tafreshi S M. Peer-to-Peer Energy Sharing for Enhancing Networked Microgrids Resilience Considering Threats to Data Availability. JoC 2023; 17 (3) :13-25
URL: http://joc.kntu.ac.ir/article-1-1030-fa.html
مهری میلاد، مقدس تفرشی سید مسعود. اشتراک‌گذا‌ری انر‌ژی همتا به همتا بر ای بهبود تاب‌آوری سیستم چند ریزشبکه‌ای با در نظر گرفتن تهدید دسترس‌پذیری داده‌ها. مجله کنترل. 1402; 17 (3) :13-25

URL: http://joc.kntu.ac.ir/article-1-1030-fa.html


1- گروه مهندسی برق، دانشکده فنی، دانشگاه گیلان، رشت، ایران
چکیده:   (1652 مشاهده)
این مقاله افزایش تاب‌آوری همزمان بهره‌برداری ریزشبکه‌های شبکه‌ای(NMG)  را به روش همتا به همتا در برابر رویدادهای آب و هوایی شدید و تهدیدات دسترس‌پذیری داده‌ها (DA) مورد مطالعه قرار می‌دهد. استفاده از روش کنترل پیشبینی مدل (MPC) و استفاده پویا از ذخیره‌سازی انرژی به ریزشبکه‌ها(MGs)  کمک می‌کند تا عدم قطعیت‌های تأثیرات رویدادها را کاهش دهند و توانایی سازگاری خود را با برنامه‌ریزی مجدد در هر مرحله زمانی افزایش دهند. با این حال، علیرغم اجرای غیرمتمرکز، تهدیدات DA ، مانند حمله انکار سرویس یا آسیب شبکه ارتباطی MG ها به‌دلیل تأثیر رویداد اصلی، باعث جزیره شدن شبکه ارتباطی شده و منجر به همگرایی نادرست مقادیر اجماع برای به اشتراک‌گذاری انرژی می‌شود. از این رو، MG ها بردارهای مقدمه از پیش تعیین شده را همراه با مقادیر انرژی مشترک با استفاده از پروتکل ارتباطی مشابه برای غلبه بر مشکلات فوق به اشتراک می‌گذارند. علاوه بر این، اثر کاهش طول داده‌های مشترک با استفاده از رویکرد MPC و روش سنجش فشرده بر ای شبکه ارتباطی در مقیاس بزرگ با اتصال کم و محدودیت پهنای باند بررسی شده است. نتایج عددی نشان‌دهنده بهره‌برداری تاب‌آورتر MG ها در برابر تهدیدات همزمان زیرساخت‌های فیزیکی سایبری است. در این حالت، اگرچه سطح عملکرد سیستم کاهش می‌یابد، اما این کاهش کمتر از حالت غیر تاب‌آور در برابر این نوع تهدیدات همزمان است .
متن کامل [PDF 989 kb]   (458 دریافت)    
نوع مطالعه: پژوهشي | موضوع مقاله: تخصصي
دریافت: 1401/5/19 | پذیرش: 1401/9/7 | انتشار: 1402/9/10

فهرست منابع
1. [1] A. Gholami, T. Shekari, M. H. Amirioun, F. Aminifar, M. H. Amini, and A. Sargolzaei, "Toward a consensus on the definition and taxonomy of power system resilience," IEEE Access, vol. 6, pp. 32035-32053, 2018. [DOI:10.1109/ACCESS.2018.2845378]
2. [2] S. Ma, B. Chen and Z. Wang, "Resilience Enhancement Strategy for Distribution Systems Under Extreme Weather Events," IEEE Transactions on Smart Grid, vol. 9, no. 2, pp. 1442-1451, 2018. [DOI:10.1109/TSG.2016.2591885]
3. [3] M. H. Amirioun, F. Aminifar and H. Lesani, "Resilience-Oriented Proactive Management of Microgrids Against Windstorms," IEEE Transactions on Power Systems, vol. 33, no. 4, pp. 4275-4284, 2018. [DOI:10.1109/TPWRS.2017.2765600]
4. [4] H. A. Gabbar and A. Gabbar, "Risk Analysis and Self-Healing Approach for Resilient Interconnect Micro Energy Grids," Sustainable Cities and Society, vol. 32, pp. 638-653, 2017. [DOI:10.1016/j.scs.2017.05.010]
5. [5] B. Chen, J. Wang, X. Lu, C. Chen and S. Zhao, "Networked Microgrids for Grid Resilience, Robustness, and Efficiency: A Review," IEEE Transactions on Smart Grid, vol. 12, no. 1, pp. 18-32, 2021. [DOI:10.1109/TSG.2020.3010570]
6. [6] H. Farzin, M. Fotuhi-Firuzabad, and M. Moeini-Aghtaie, "Enhancing power system resilience through hierarchical outage management in multi-microgrids", IEEE Transactions on smart grid, vol. 7, no. 6, pp. 2869-2879, 2016. [DOI:10.1109/TSG.2016.2558628]
7. [7] H. Farzin, R. Ghorani, M. Fotuhi-Firuzabad, and M. Moeini-Aghtaie, "A market mechanism to quantify emergency energy transactions value in a multi-microgrid system," IEEE Transactions on Sustainable Energy, vol. 10, no. 1, pp. 426-437, 2019. [DOI:10.1109/TSTE.2017.2741427]
8. [8] A. Hussain, V. Bui and H. Kim, "An Effort-Based Reward Approach for Allocating Load Shedding Amount in Networked Microgrids Using Multiagent System," IEEE Transactions on Industrial Informatics, vol. 16, no. 4, pp. 2268-2279, 2020. [DOI:10.1109/TII.2019.2929284]
9. [9] F. Shen, Q. Wu, J. Zhao, W. Wei, N. D. Hatziargyriou and F. Liu, "Distributed Risk-Limiting Load Restoration in Unbalanced Distribution Systems with Networked Microgrids," IEEE Transactions on Smart Grid, vol. 11, no. 6, pp. 4574-4586, 2020. [DOI:10.1109/TSG.2020.2995099]
10. [10] Z. Wang, B. Chen, J. Wang, and C. Chen, "Networked microgrids for self-healing power systems," IEEE Transactions on smart grid, vol. 7, no. 1, pp. 310-319, 2016. [DOI:10.1109/TSG.2015.2427513]
11. [11] M. Mehri Arsoon and S.M. Moghaddas-Tafreshi, "Peer-to-peer energy bartering for the resilience response enhancement of networked microgrids," Applied Energy, vol. 261, p. 114413, 2020. [DOI:10.1016/j.apenergy.2019.114413]
12. [12] T. Sousa, T. Soares, P. Pinson, F. Moret, T. Baroche, and E. Sorin, "Peer -to-peer and community-based markets: A comprehensive review," Renewable and Sustainable Energy Reviews., vol.104, pp.367-378, 2019. [DOI:10.1016/j.rser.2019.01.036]
13. [13] T. Perger, L. Wachter, A. Fleischhacker and H. Auer, "PV sharing in local communities: Peer-to-peer trading under consideration of the prosumers' willingness-to-pay", Sustainable Cities and Society, vol. 66, pp. 102634, 2020. [DOI:10.1016/j.scs.2020.102634]
14. [14] S. Xuanyue, X. Wang, X. Wu, Y. Wang, Z. Song, B. Wang, Z. Ma, "Peer-to-peer multi-energy distributed trading for interconnected microgrids: A general Nash bargaining approach," International Journal of Electrical Power and Energy Systems, vol. 138, pp. 107892, 2022. [DOI:10.1016/j.ijepes.2021.107892]
15. [15] M. Mehri Arsoon and S.M. Moghaddas-Tafreshi, "Resilience-Oriented Proactive Peer to Peer Multiple Energy Carriers Swapping Framework for the Partial Networked Energy Hubs," Sustainable Energy Technologies and Assessments, vol. 53, no. 102576, 2022. [DOI:10.1016/j.seta.2022.102576]
16. [16] D. Xu et al., "Peer-to-Peer Multienergy and Communication Resource Trading for Interconnected Microgrids," IEEE Transactions on Industrial Informatics, vol. 17, no. 4, pp. 2522-2533, 2021. [DOI:10.1109/TII.2020.3000906]
17. [17] Z. Zhao et al., "Distributed Robust Model Predictive Control-Based Energy Management Strategy for Islanded Multi-Microgrids Considering Uncertainty," IEEE Transactions on Smart Grid, vol. 13, no. 3, pp. 2107-2120, 2022. [DOI:10.1109/TSG.2022.3147370]
18. [18] M. N. Alam, S. Chakrabarti and A. Ghosh, "Networked Microgrids: State-of-the-Art and Future Perspectives," IEEE Transactions on Industrial Informatics, vol. 15, no. 3, pp. 1238-1250, 2019. [DOI:10.1109/TII.2018.2881540]
19. [19] N. Li, W. Hou and S. E. Ghoreyshipour, "A secured transactive energy management framework for home AC/DC microgrids," Sustainable Cities and Society, vol. 74, 2021. [DOI:10.1016/j.scs.2021.103165]
20. [20] J. Tian, B. Wang, T. Li, F. Shang and K. Cao, "Coordinated cyber-physical attacks considering DoS attacks in power systems," International Journal of Robust and Nonlinear Control, vol. 30, no. 11, pp. 4345-4358, 2020. [DOI:10.1002/rnc.4801]
21. [21] M. M. Arsoon and S. M. Moghaddas-Tafreshi, "Modeling Data Intrusion Attacks on Energy Storage for Vulnerability Assessment of Smart Microgrid Operation," 2021 11th Smart Grid Conference (SGC), Tabriz, Iran, Islamic Republic of, 2021, pp. 1-5. [DOI:10.1109/SGC54087.2021.9664207]
22. [22] J. Duan and M. Chow, "A Resilient Consensus-Based Distributed Energy Management Algorithm against Data Integrity Attacks," IEEE Transactions on smart grid, vol. 10, no. 5, pp. 4729-4740, 2019. [DOI:10.1109/TSG.2018.2867106]
23. [23] K. Pan, A. Teixeira, M. Cvetkovic, and P. Palensky, "Cyber Risk Analysis of Combined Data Attacks Against Power System State Estimation," IEEE Transactions on smart grid, vol. 10, no. 3, pp. 3044-3056, 2019. [DOI:10.1109/TSG.2018.2817387]
24. [24] Q. Zhou, M. Shahidehpour, A. Paaso, S. Bahramirad, A. Alabdulwahab and A. Abusorrah, "Distributed Control and Communication Strategies in Networked Microgrids," IEEE Communications Surveys & Tutorials, vol. 22, no. 4, pp. 2586-2633, 2020. [DOI:10.1109/COMST.2020.3023963]
25. [25] L. Ding, Q. Han, B. Ning and D. Yue, "Distributed Resilient Finite-Time Secondary Control for Heterogeneous Battery Energy Storage Systems Under Denial-of-Service Attacks," IEEE Transactions on Industrial Informatics, vol. 16, no. 7, pp. 4909-4919, 2020. [DOI:10.1109/TII.2019.2955739]
26. [26] T. Qian, X. Chen, Y. Xin, W. Tang, L. Wang, "Resilient decentralized optimization of chance constrained electricity-gas systems over lossy communication networks," Energy, vol. 239, pp. 122158, 2022. [DOI:10.1016/j.energy.2021.122158]
27. [27] X. Liang, Z. Li, W. Huang, Q. H. Wu and H. Zhang, "Relaxed Alternating Direction Method of Multipliers for Hedging Communication Packet Loss in Integrated Electrical and Heating System," Journal of Modern Power Systems and Clean Energy, vol. 8, no. 5, pp. 874-883, 2020. [DOI:10.35833/MPCE.2020.000163]
28. [28] C. Yuan, Z. Li and H. Xin, "Cyber-Resilient Distributed Operation of Active Distribution Networks Based on Relaxed Alternating Direction Method of Multipliers," 2021 4th International Conference on Energy, Electrical and Power Engineering (CEEPE), 2021, pp. 415-421. [DOI:10.1109/CEEPE51765.2021.9475721]
29. [29] J. Duan and M. -Y. Chow, "Robust Consensus-Based Distributed Energy Management for Microgrids With Packet Losses Tolerance," IEEE Transactions on Smart Grid, vol. 11, no. 1, pp. 281-290, 2020. [DOI:10.1109/TSG.2019.2921231]
30. [30] P. T. Mana, K. P. Schneider, W. Du, M. Mukherjee, T. Hardy and F. K. Tuffner, "Study of Microgrid Resilience Through Co-Simulation of Power System Dynamics and Communication Systems," IEEE Transactions on Industrial Informatics, vol. 17, no. 3, pp. 1905-1915, 2021. [DOI:10.1109/TII.2020.2989107]
31. [31] Z. Wang, H. He, Z. Wan and Y. Sun, "Coordinated Topology Attacks in Smart Grid Using Deep Reinforcement Learning," IEEE Transactions on Industrial Informatics, vol. 17, no. 2, pp. 1407-1415, 2021. [DOI:10.1109/TII.2020.2994977]
32. [32] L. Wei, A. I. Sarwat, W. Saad and S. Biswas, "Stochastic Games for Power Grid Protection Against Coordinated Cyber-Physical Attacks," IEEE Transactions on Smart Grid, vol. 9, no. 2, pp. 684-694, 2018. [DOI:10.1109/TSG.2016.2561266]
33. [33] E. J. Candes and T. Tao, "Decoding by linear programming," IEEE Transactions on Information Theory, vol. 51, no.12, pp.4203-4215, 2005. [DOI:10.1109/TIT.2005.858979]
34. [34] K. Jia, B. Yang, T. Bi and L. Zheng, "An Improved Sparse-Measurement-Based Fault Location Technology for Distribution Networks," IEEE Transactions on Industrial Informatics, vol. 17, no. 3, pp. 1712-1720, 2021.
35. [35] Z. Bie, Y. Lin, G. Li, F. Li, "Battling the extreme: a study on the power system resilience," Proceedings of the IEEE, vol. 105, no. 7, pp. 1253-1266, 2017. [DOI:10.1109/JPROC.2017.2679040]
36. [36] H. Ma, Z. Liu, M. Li, B. Wangd, Y. Si, Y. Yang, M. A. Mohamed, "A two-stage optimal scheduling method for active distribution networks considering uncertainty risk," Energy Reports, vol. 7, pp. 4633-4641, 2021. [DOI:10.1016/j.egyr.2021.07.023]
37. [37] A. Cetinkaya, H. Ishii, and T. Hayakawa, "An Overview on Denial-of-Service Attacks in Control Systems: Attack Models and Security Analyses," Entropy, vol. 21, no. 2, p. 210, 2019. [DOI:10.3390/e21020210]
38. [38] S. Feng and P. Tesi, "Resilient control under denial-of-service: Robust design", Automatica, vol. 79, pp. 42-51, 2017. [DOI:10.1016/j.automatica.2017.01.031]
39. [39] C. Chen, J. Wang, and S. Kishore, "A Distributed Direct Load Control Approach for Large-Scale Residential Demand Response," IEEE Transactions on Power Systems, vol. 29, no. 5, pp. 2219-2228, 2014. [DOI:10.1109/TPWRS.2014.2307474]
40. [40] E. Brouwer and W. H. Haemers, Spectra of Graphs, New York:Springer, 2012, pp. 37. [DOI:10.1007/978-1-4614-1939-6]
41. [41] E. Candes and J. Romberg. (2005). L1-Magic: Recovery of Sparse Signals Via Convex Programming. [Online]. Available: https://statweb.stanford.edu/~candes/software/l1magic/downloads/l1magic.pdf
42. [42] A. Sheikhi, M. Rayati, S. Bahrami, and A. Mohammad Ranjbar, "Integrated Demand Side Management Game in Smart Energy Hubs," IEEE Transactions on Smart Grid, vol. 6, no. 2, pp. 675-683, 2015. [DOI:10.1109/TSG.2014.2377020]

ارسال نظر درباره این مقاله : نام کاربری یا پست الکترونیک شما:
CAPTCHA

ارسال پیام به نویسنده مسئول


بازنشر اطلاعات
Creative Commons License این مقاله تحت شرایط Creative Commons Attribution-NonCommercial 4.0 International License قابل بازنشر است.

کلیه حقوق این وب سایت متعلق به مجله کنترل می باشد.

طراحی و برنامه نویسی : یکتاوب افزار شرق

© 2025 CC BY-NC 4.0 | Journal of Control

Designed & Developed by : Yektaweb