دوره 17، شماره 3 - ( مجله کنترل، جلد 17، شماره 3، پاییز 1402 )                   جلد 17 شماره 3,1402 صفحات 11-1 | برگشت به فهرست نسخه ها


XML English Abstract Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Zamani H, Abbaszadeh K, Karimi M, Gyselinck J. An Effective Discretization Method of Derivative Operator for the Active Damping Purpose in LCL-Filter Based Grid-Tied Inverters. JoC 2023; 17 (3) :1-11
URL: http://joc.kntu.ac.ir/article-1-1032-fa.html
زمانی حسن، عباس زاده کریم، کریمی محمد هادی، گیسلینک یوهان. یک روش گسسته سازی موثر اپراتور مشتق برای هدف میرایی فعال در اینورترهای متصل به شبکه مبتنی بر فیلتر LCL. مجله کنترل. 1402; 17 (3) :1-11

URL: http://joc.kntu.ac.ir/article-1-1032-fa.html


1- گروه‌ مهندسی برق، دانشگاه صنعتی خواجه نصیرالدین طوسی، تهران، ایران
2- مرکز فرهنگی و پژوهشی آموزش و پرورش، تهران، ایران
3- گروه BEAM، دانشگاه آزاد بروکسل، بلژیک
چکیده:   (1170 مشاهده)
برای همگام سازی با شبکه و کنترل جریان های فعال و راکتیو تزریقی اینورترهای متصل به شبکه مبتنی بر فیلتر LCL، ولتاژ خازن را می توان نمونه برداری کرد. یک فیلتر LCL هارمونیک های سوئیچینگ را به طور موثر ضعیف می کند، اما به یک سنسور اضافی برای میرایی تشدید فیلتر LCL نیاز دارد. روش‌های رایج از جریان‌های خازن برای میرایی رزونانس فیلتر LCL استفاده می‌کنند. از نظر تئوری، مشتق ولتاژ خازن، که متناسب با جریان خازن است، تشدید را کاهش می دهد و از سنسور اضافی اجتناب می شود. با این حال، روش‌های گسسته‌سازی سنتی برای پیاده‌سازی دیجیتال اپراتور مشتق زمانی معتبر نیستند که فرکانس تشدید بالا باشد. در واقع، آنها فاز و بزرگی تابع ’s را در ناحیه فرکانس تشدید حفظ نمی کنند. این مقاله یک روش موثر برای گسسته سازی تابع ’s در محدوده فرکانس مورد نظر معرفی می کند. ولتاژهای خازن فیلتر LCL نمونه برداری شده و تابع پیشنهادی مشتق آنها می شود. خروجی تابع مشتق با بهره تنظیم شده برای میرایی رزونانس فیلتر LCL به خروجی کنترلر اضافه می شود. نتایج شبیه سازی کارایی روش پیشنهادی را نشان می دهد.
متن کامل [PDF 1097 kb]   (360 دریافت)    
نوع مطالعه: پژوهشي | موضوع مقاله: تخصصي
دریافت: 1401/6/3 | پذیرش: 1401/8/27 | انتشار: 1402/9/10

فهرست منابع
1. [1] D. Pan, X. Ruan, C. Bao, W. Li, and X. Wang, "Capacitor-current-feedback active damping with reduced computation delay for improving robustness of lcl-type grid-connected inverter," IEEE Transactions on Power Electronics, vol. 29, no. 7, pp. 3414-3427, 2013. [DOI:10.1109/TPEL.2013.2279206]
2. [2] J. He and Y. W. Li, "Generalized closed-loop control schemes with embedded virtual impedances for voltage source converters with lc or lcl filters," IEEE Transactions on Power Electronics, vol. 27, no. 4, pp. 1850-1861, 2011. [DOI:10.1109/TPEL.2011.2168427]
3. [3] C. Bao, X. Ruan, X. Wang, W. Li, D. Pan, and K. Weng, "Step-by-step controller design for LCL-type grid-connected inverter with capacitor-current feedback active-damping," IEEE Transactions on Power Electronics, vol. 29, no. 3, pp. 1239-1253, 2013. [DOI:10.1109/TPEL.2013.2262378]
4. [4] V. Miskovic, V. Blasko, T. M. Jahns, A. H. Smith, and C. Romenesko, "Observer-based active damping of LCL resonance in grid-connected voltage source converters," IEEE Transactions on Industry Applications, vol. 50, no. 6, pp. 3977-3985, 2014. [DOI:10.1109/TIA.2014.2317849]
5. [5] X. Wang, F. Blaabjerg, and P. C. Loh, "Design-oriented analysis of resonance damping and harmonic compensation for LCL-filtered voltage source converters," in 2014 International Power Electronics Conference (IPEC-Hiroshima 2014-ECCE ASIA), pp. 216-223. IEEE, 2014. [DOI:10.1109/IPEC.2014.6869583]
6. [6] X. Wang, F. Blaabjerg, and P. C. Loh, "Grid-current-feedback active damping for LCL resonance in grid-connected voltage-source converters," IEEE Transactions on Power Electronics, vol. 31, no. 1, pp. 213-223, 2015. [DOI:10.1109/TPEL.2015.2411851]
7. [7] A. J. Xu, B. S. Xie, C. J. Kan, and D. L. Ji, "An improved inverter-side current feedback control for grid-connected inverters with LCL filters," in 2015 9th International Conference on Power Electronics and ECCE Asia (ICPEECCE Asia), pp. 984-989. IEEE, 2015.
8. [8] L. Zhou, X. Zhou, Y. Chen, Z. Lv, Z. He, W. Wu, L. Yang, K. Yan, A. Luo, and J. M. Guerrero, "Inverter-current-feedback resonance-suppression method for LCL-type dg system to reduce resonance-frequency offset and grid-inductance effect," IEEE Transactions on Industrial Electronics, vol. 65, no. 9, pp. 7036-7048, 2018. [DOI:10.1109/TIE.2018.2795556]
9. [9] D. Pan, X. Ruan, C. Bao, W. Li, and X. Wang, "Capacitor-current-feedback active damping with reduced computation delay for improving robustness of LCL-type grid-connected inverter," IEEE Transactions on Power Electronics, vol. 29, no. 7, pp. 3414-3427, 2013. [DOI:10.1109/TPEL.2013.2279206]
10. [10] X. Li, X. Wu, Y. Geng, X. Yuan, C. Xia, and X. Zhang, "Wide damping region for LCL-type grid-connected inverter with an improved capacitor current-feedback method," IEEE Transactions on Power Electronics, vol. 30, no. 9, pp. 5247-5259, 2014. [DOI:10.1109/TPEL.2014.2364897]
11. [11] Malinowski, Mariusz, and Steffen Bernet. "A simple voltage sensorless active damping scheme for three-phase PWM converters with an $ LCL $ filter." IEEE Transactions on Industrial Electronics 55.4 (2008): 1876-1880. [DOI:10.1109/TIE.2008.917066]
12. [12] R. Pe˜na-Alzola, M. Liserre, F. Blaabjerg, R. Sebasti'an, J. Dannehl, and F. W. Fuchs, "Systematic design of the lead-lag network method for active damping in LCL-filter based three phase converters," IEEE Transactions on Industrial Informatics, vol. 10, no. 1, pp. 43-52, 2013. [DOI:10.1109/TII.2013.2263506]
13. [13] V. Blasko and V. Kaura, "A novel control to actively damp resonance in input LC filter of a three-phase voltage source converter," IEEE Transactions on Industry Applications, vol. 33, no. 2, pp. 542-550, 1997. [DOI:10.1109/28.568021]
14. [14] V. Blasko and V. Kaura, "A novel control to actively damp resonance in input LC filter of a three-phase voltage source converter," IEEE Transactions on Industry Applications, vol. 33, no. 2, pp. 542-550, 1997. [DOI:10.1109/28.568021]
15. [15] J. Xu, S. Xie, and T. Tang, "Active damping-based control for grid-connected LCL-filtered inverter with injected grid current feedback only," IEEE Transactions on Industrial Electronics, vol. 61, no. 9, pp. 4746-4758, 2013. [DOI:10.1109/TIE.2013.2290771]
16. [16] R. Guzman, L. G. de Vicu˜na, M. Castilla, J. Miret, and H. Martin, "Variable structure control in natural frame for three-phase grid-connected inverters with LCL filter," IEEE Transactions on Power Electronics, vol. 33, no. 5, pp. 4512-4522, 2017. [DOI:10.1109/TPEL.2017.2723638]
17. [17] W. Jiang, W. Ma, J. Wang, L. Wang, and Y. Gao, "Deadbeat control based on current predictive calibration for grid-connected converter under unbalanced grid voltage," IEEE Transactions on Industrial Electronics, vol. 64, no. 7, pp. 5479-5491, 2017. [DOI:10.1109/TIE.2017.2674620]
18. [18] C. A. Busada, S. G. Jorge, and J. A. Solsona, "Full-state feedback equivalent controller for active damping in LCL-filtered grid-connected inverters using a reduced number of sensors," IEEE Transactions on Industrial Electronics, vol. 62, no. 10, pp. 5993-6002, 2015. [DOI:10.1109/TIE.2015.2424391]
19. [19] P. Karamanakos, R. Mattila, and T. Geyer, "Fixed switching frequency direct model predictive control based on output current gradients," in IECON 2018 - 44th Annual Conference of the IEEE Industrial Electronics Society, pp. 2329-2334, 2018. DOI 10.1109/IECON.2018.8592733 [DOI:10.1109/IECON.2018.8592733]
20. [20] F. Piotr, "Finite control set model predictive control for grid-connected NPC converter with LCL filter and novel resonance damping method," in 2017 19th European Conference on Power Electronics and Applications (EPE'17 ECCE Europe), pp. P-1. IEEE, 2017. [DOI:10.23919/EPE17ECCEEurope.2017.8099023]
21. [21] G. V. Hollweg, P. J. D. de Oliveira Evald, E. Mattos, R. V. Tambara, and H. A. Gr¨undling, "Feasibility assessment of adaptive sliding mode controllers for grid-tied inverters with LCL filter," Journal of Control, Automation and Electrical Systems, vol. 33, no. 2, pp. 434-447, 2022. [DOI:10.1007/s40313-021-00835-5]
22. [22] S. G. Parker, B. P. McGrath, and D. G. Holmes, "Regions of active damping control for LCL filters," IEEE Transactions on Industry Applications, vol. 50, no. 1, pp. 424-432, 2013. [DOI:10.1109/TIA.2013.2266892]
23. [23] T. Liu, J. Liu, Z. Liu, and Z. Liu, "A study of virtual resistor-based active damping alternatives for LCL resonance in grid-connected voltage source inverters," IEEE Transactions on Power Electronics, vol. 35, no. 1, pp. 247-262, 2019. [DOI:10.1109/TPEL.2019.2911163]
24. [24] R. Guzman, L. G. de Vicu˜na, M. Castilla, J. Miret, and J. de la Hoz, "Variable structure control for three-phase LCL-filtered inverters using a reduced converter model," IEEE Transactions on Industrial Electronics, vol. 65, no. 1, pp. 5-15, 2017. [DOI:10.1109/TIE.2017.2716881]
25. [25] K. Kumari and A. K. Jain, "Cascaded control for lcl filter based grid-tied system with reduced sensors," IET Power Electronics, vol. 16, no. 14, pp. 1526-1539 2022. [DOI:10.1049/pel2.12323]
26. [26] J. Dannehl, F. W. Fuchs, and P. B. Thogersen, "PI state space current control of grid-connected PWM converters with LCL filters," IEEE transactions on power electronics, vol. 25, no. 9, pp. 2320-2330, 2010. [DOI:10.1109/TPEL.2010.2047408]
27. [27] X. Bao, F. Zhuo, Y. Tian, and P. Tan, "Simplified feedback linearization control of three-phase photovoltaic inverter with an lcl filter," IEEE Transactions on Power Electronics, vol. 28, no. 6, pp. 2739-2752, 2012. [DOI:10.1109/TPEL.2012.2225076]
28. [28] J. Kukkola and M. Hinkkanen, "Observer-based state-space current control for a three-phase grid-connected converter equipped with an lcl filter," IEEE Transactions on Industry Applications, vol. 50, no. 4, pp. 2700-2709, 2013. [DOI:10.1109/TIA.2013.2295461]
29. [29] K. Hatua, A. K. Jain, D. Banerjee, and V. T. Ranganathan, "Active damping of output LC filter resonance for vector-controlled VSI-fed ac motor drives," IEEE Transactions on Industrial Electronics, vol. 59, no. 1, pp. 334-342, 2012. DOI 10.1109/TIE.2011.2141093 [DOI:10.1109/TIE.2011.2141093]
30. [30] J. Dannehl, M. Liserre, F. W. Fuchs, "Filter-based active damping of voltage source converters with lcl filter", IEEE Transactions on Industrial Electronics vol. 58, no. 8, pp. 3623-3633, 2010. [DOI:10.1109/TIE.2010.2081952]
31. [31] O. Nelles, "Nonlinear system identification: from classical approaches to neural networks, fuzzy models, and gaussian processes", Springer Nature, 2020. [DOI:10.1007/978-3-030-47439-3]
32. [32] J. Dannehl, C. Wessels, F. W. Fuchs, "Limitations of voltage-oriented pi current control of grid-connected pwm rectifiers with lcl filters", IEEE transactions on industrial electronics vol. 56, no. 2, pp. 380-388, February 2009 [DOI:10.1109/TIE.2008.2008774]
33. [33] Guan, Yuanpeng, et al. "The dual-current control strategy of grid-connected inverter with LCL filter." IEEE Transactions on Power Electronics vol. 34, no. 6, pp. 5940-5952, June 2019 [DOI:10.1109/TPEL.2018.2869625]
34. [34] Dannehl, Jörg, et al. "Investigation of active damping approaches for PI-based current control of grid-connected pulse width modulation converters with LCL filters." IEEE Transactions on Industry Applications vol. 46, no. 4, pp. 1509-1517, July-Aug. 2010 [DOI:10.1109/TIA.2010.2049974]

ارسال نظر درباره این مقاله : نام کاربری یا پست الکترونیک شما:
CAPTCHA

ارسال پیام به نویسنده مسئول


بازنشر اطلاعات
Creative Commons License این مقاله تحت شرایط Creative Commons Attribution-NonCommercial 4.0 International License قابل بازنشر است.

کلیه حقوق این وب سایت متعلق به مجله کنترل می باشد.

طراحی و برنامه نویسی : یکتاوب افزار شرق

© 2025 CC BY-NC 4.0 | Journal of Control

Designed & Developed by : Yektaweb