1. [1] Arzu Akyuz, G., Erman Erkan, T. (2010). Supply chain performance measurement: A literature review. International Journal of Production Research, 48(17), 5137-5155. [
DOI:10.1080/00207540903089536]
2. [2] Axsater, S. (1985). Control theory concepts in production and inventory control. International Journal of Systems Science, 16(2), 161-169. [
DOI:10.1080/00207728508926662]
3. [3] Beamon, B. M. (1998). Supply chain design and analysis: Models and methods. International Journal of Production Economics, 55(3), 281-294. [
DOI:10.1016/S0925-5273(98)00079-6]
4. [4] Bertsekas, D. (2000). Dynamic programming and optimal control. Belmont, MA: Athena Scientific. Appendix E.
5. [5] de Vries, J. (2007). Diagnosing inventory management systems: An empirical evaluation of a conceptual approach. International Journal of Production Economics, 108(1-2), 63-73. [
DOI:10.1016/j.ijpe.2006.12.003]
6. [6] Dolgui, A., Ivanov, D., Sethi, S. P., Sokolov, B. (2019). Scheduling in production, supply chain and industry systems by optimal control: fundamentals, state-of-the-art and applications. International Journal of Production Research,57(2), 411-432 [
DOI:10.1080/00207543.2018.1442948]
7. [7] Edghill, J., Towill, D. (1989). The use of system dynamics in manufacturing systems engineering. Transactions of the Institute of Measurement and Control, 11(4), 208-216. [
DOI:10.1177/014233128901100406]
8. [8] Fiestras-Janeiro, M. G., García-Jurado, I., Meca, A., Mosquera, M. A. (2011). Cooperative game theory and inventory management. European Journal of Operational Research, 210(3), 459-466. [
DOI:10.1016/j.ejor.2010.06.025]
9. [9] Ivanov, D., Dolgui, A., Sokolov, B. (2016). Robust dynamic schedule coordination control in the supply chain. Computers Industrial Engineering, 94, 18-31. [
DOI:10.1016/j.cie.2016.01.009]
10. [10] Ivanov, D., Sethi, S., Dolgui, A., Sokolov, B. (2018). A survey on control theory applications to operational systems, supply chain management, and industry. Annual Reviews in Control, 46, 134-147. [
DOI:10.1016/j.arcontrol.2018.10.014]
11. [11] Kumar, V. N. S. A., Kumar, V., Brady, M., Garza-Reyes, J. A., Simpson, M. (2017). Resolving forward-reverse logistics multi-period model using evolutionary algorithms. International Journal of Production Economics, 183, 458-469. [
DOI:10.1016/j.ijpe.2016.04.026]
12. [12] Martinez-Luaces, V. (2018). Square matrices associated to mixing problems ODE systems. In Matrix Theory-Applications and Theorems. [
DOI:10.5772/intechopen.74437]
13. [13] Ortega, M., Lin, L. (2004). Control theory applications to the production-inventory problem: A review. International Journal of Production Research, 42(11), 2303-2322. [
DOI:10.1080/00207540410001666260]
14. [14] Powell, W. B. (2007). Approximate dynamic programming: Solving the curses of dimensionality, 703, John Wiley & Sons. [
DOI:10.1002/9780470182963]
15. [15] Rahimian, E., Zabihi, S., Amiri, M., Linares-Barranco, B. (2017). Digital implementation of the two-compartmental Pinsky-Rinzel pyramidal neuron model. IEEE Transactions on Biomedical Circuits and Systems, 12(1), 47-57. [
DOI:10.1109/TBCAS.2017.2753541]
16. [16] Riddalls, C. E., Bennett, S., Tipi, N. S. (2000). Modelling the dynamics of supply chains. International Journal of Systems Science, 31(8), 969-976. [
DOI:10.1080/002077200412122]
17. [17] Singh, D., Verma, A. (2018). Inventory management in supply chain. Materials Today: Proceedings, 5(2), 3867-3872. [
DOI:10.1016/j.matpr.2017.11.641]
18. [18] Taboada, H., Davizón, Y. A., Espíritu, J. F., Sánchez-Leal, J. (2022). Mathematical modeling and optimal control for a class of dynamic supply chain: A systems theory approach. Applied Sciences, 12(11), 5347. [
DOI:10.3390/app12115347]
19. [19] Yuan, K. F., Gao, Y. (2010). Inventory decision-making models for a closed loop supply chain system. International Journal of Production Research, 48(20), 6155-6187. [
DOI:10.1080/00207540903173637]
20. [20] Zhang, G., Amin, S. H. (2011). Network design of a closed-loop supply chain with uncertain demand and return. In Proceedings of the 2011 IEEE International Conference on Service Operations, Logistics and Informatics, 376-379, IEEE. [
DOI:10.1109/SOLI.2011.5986588]
21. [21] Zhang, J., Wu, Y. (2022). A hybrid model for optimizing supply chain inventory under demand uncertainty. International Journal of Production Economics, 248, 108431.
22. [22] Zhao, L., Yang, Z. (2023). Multi-objective optimization in supply chain networks: An adaptive approach. Computers Industrial Engineering, 177, 108235.
23. [23] Zhou, W., Xu, Q. (2021). Optimal control strategies for supply chain management with stochastic demand. European Journal of Operational Research, 293(1), 45-59.