Volume 14, Issue 2 (Journal of Control, V.14, N.2 Summer 2020)                   JoC 2020, 14(2): 27-33 | Back to browse issues page


XML Persian Abstract Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Allahverdi F, Ramezani A, Forouzanfar M. Sensor Fault Detection for a class of Uncertain Nonlinear Systems Using Sliding Mode Observers. JoC 2020; 14 (2) :27-33
URL: http://joc.kntu.ac.ir/article-1-583-en.html
Abstract:   (7001 Views)
This paper deals with the issues of sensor fault detection for a class of Lipschitz uncertain nonlinear system. By definition coordinate transformation matrix for system states and output system, at first the original system divided into two subsystems. The first subsystem includes uncertainties but without any sensor faults and the second subsystem has sensor faults but is free of uncertainties. Then sensor faults in second subsystem are formed as actuator faults. For the aim of fault detection (FD) two sliding mode observers are designed for two subsystems. Stability condition is obtained based on Lyapunov approach. The necessary matrices and parameters to design observers are obtained by solving linear matrix inequality (LMI) problem.  Finally, simulation example is given to illustrate the effectiveness proposed approach.
Full-Text [PDF 515 kb]   (1929 Downloads)    
Type of Article: Research paper | Subject: Special
Received: 2018/05/26 | Accepted: 2018/11/13 | Published: 2019/08/15

References
1. [1] Liu X.Y, Song Y.D, Song Q. 2011, "Fault tolerant control of dynamic systems with unknown control direction input nonlinearities actuator failures". Proceedings of the 50th IEEE Conference on Decision and Control and European Control conference (CDC-ECC) pp. 4973-4978 ,. [DOI:10.1109/CDC.2011.6160602]
2. [2] X.J. Li, G.H. Yang, 2012, "Robust adaptive fault-tolerant control for uncertain linear systems with actuator failures", IET Control Theory & Applications. Vol.6, no.10, pp. 1544-1551. [DOI:10.1049/iet-cta.2011.0599]
3. [3] Khebbache H, Tadjine M, Labiod S, Boulkroune A. 2015, "Adaptive sensor fault tolerant control for a class of multivariable uncertain nonlinear systems" ISA Transaction, vol. 55, pp.100-115. [DOI:10.1016/j.isatra.2014.10.001]
4. [4] Chen C.C, Xu S.D, Liang Y.W. 2016, "Study of nonlinear integral sliding mode fault-tolerant control", IEEE/ASME Transaction On mechatronic, vol. 21, no. 2, pp. 1160-1168. [DOI:10.1109/TMECH.2015.2474700]
5. [5] Chen J, Patton RJ, Zhang HZ. 1996, "Design of unknown input observers and robust fault detection filters", International journal of control, vol.63, pp. 85-105. [DOI:10.1080/00207179608921833]
6. [6] Zarei J, shokri E. 2014, "Robust sensor fault detection based on nonlinear unknown input observer", Measurment, vol.48, pp. 355-367. [DOI:10.1016/j.measurement.2013.11.015]
7. [7] Liu X, Gao Zh. 2015, "Unknown input observers for fault diagnosis in Lipschitz nonlinear systems", International conference on mechatronics and automation, August 2-5, pp. 1555-1560. [DOI:10.1109/ICMA.2015.7237716]
8. [8] Liu X, Gao X, Han J. 2016, "Robust unknown input observer based fault detection for high order multi agent systems with disturbances", ISA Transactions, vol. 61, pp. 15-28. [DOI:10.1016/j.isatra.2015.11.025]
9. [9] Ng K.Y, Tan C.P, Edwards C, Kuang Y.C, 2007, "New results in robust actuator fault reconstruction for linear uncertain systems using sliding mode observers". International Journal of Robust and Nonlinear Control, vol.17, pp.1294-1319. [DOI:10.1002/rnc.1170]
10. [10] Chen W and Saif M, 2008, "Actuator fault diagnosis for uncertain linear systems using a high-order sliding mode robust differentiator (HOSMRD)", International Journal of Robust and Nonlinear Control, vol. 18, no. 4-5, pp. 413-426. [DOI:10.1002/rnc.1201]
11. [11] Raoufi R, Marquez H.J, and Zinober A.S.I, 2010, "H° sliding mode observers for uncertain nonlinear Lipschitz systems with fault estimation synthesis", International Journal of Robust and nonlinear control, vol.20, no.16, pp.1785-1801. [DOI:10.1002/rnc.1545]
12. [12] Tan C.P and Edwards C, 2010, "Robust fault reconstruction in uncertain linear systems using multiple sliding mode observers in cascade," IEEE Transaction on Automatic Control, vol. 55, no. 4, pp. 855-867. [DOI:10.1109/TAC.2010.2041996]
13. [13] Veluvolu K.C, Kim M.Y and Lee D, 2011, "Nonlinear sliding mode high gain observers for fault estimation, International Journal of Systems Science", vol.42, no.7, pp. 1065-1074. [DOI:10.1080/00207721.2011.573102]
14. [14] Veluvolu K.C and Soh Y.C, 2011, "Fault reconstruction and state estimation with sliding mode observers for Lipschitz non-linear systems," IET Control Theory and Applications, vol. 5, no. 11, pp. 1255- 1263. [DOI:10.1049/iet-cta.2010.0171]
15. [15] Veluvolu K.C, Kim M.Y and Lee D, 2011, "Nonlinear sliding mode high-gain observers for fault estimation", International Journal of Systems Science, vol. 42, no. 7, pp. 1065-1074. [DOI:10.1080/00207721.2011.573102]
16. [16] Yang J, Zhu F, Wang X and Bu X, 2015, "Robust sliding mode observer based sensor fault estimation, actuator fault detection and isolation for uncertain nonlinear systems", International Journal of Control, Automation and system, vol. 13, no. 5, pp. 1037-1046. [DOI:10.1007/s12555-014-0159-4]
17. [17] Wang X, Tan C.P, Zhou D, 2017, "A novel sliding mode observer for state and fault estimation in systems not satisfying matching and minimum phase conditions", Automatica, vol. 79, pp. 290-295. [DOI:10.1016/j.automatica.2017.01.027]
18. [18] Gao Z.W, Ding S.X, 2007, "Actuator fault robust estimation and fault tolerant control for a class of nonlinear descriptor systems", Automatica, vol.43, pp. 912-920. [DOI:10.1016/j.automatica.2006.11.018]
19. [19] Meskin N., & Khorasani K. 2009, "Actuator fault detection and isolation for a network of unmanned vehicles", IEEE Transactions on Automatic Control, vol.54, no.4, 835-840. [DOI:10.1109/TAC.2008.2009675]
20. [20] Chen W and saif M, 2011, "Actuator fault diagnosis for a class of nonlinear systems and its application to a laboratory 3D crane", Automatica, vol. 47, no.7, pp. 1435-1444. [DOI:10.1016/j.automatica.2011.02.012]
21. [21] Yang Q, Ge S.S, Sun Y, 2015, "Adaptive actuator fault tolerant control for uncertain nonlinear systems with multiple actuators", Automatica, vol. 60, pp. 92-99. [DOI:10.1016/j.automatica.2015.07.006]
22. [22] Zhang XD. 2011, "Sensor bias fault detection and isolation in a class of nonlinear uncertain systems using adaptive estimation", IEEE Transaction Automatic Control, vol. 56, no. 5 pp. 1220-1226. [DOI:10.1109/TAC.2011.2112471]
23. [23] Shen QK, Jiang B, Shi P. 2014, "Adaptive fault diagnosis for T-S fuzzy systems with sensor faults and system performace analysis", IEEE Transaction Fuzzy System, vol. 22, no. 2, pp. 274-285. [DOI:10.1109/TFUZZ.2013.2252355]
24. [24] Du DS, Jiang B, Shi P. 2012, "Sensor fault estimation and compensation for time-delay switched systems". International Journal of Systems Science, vol.43, no. 4, pp. 629-640. [DOI:10.1080/00207721.2010.517867]
25. [25] Yan X.G. and Edwards, C. 2007. Nonlinear robust fault reconstruction and estimation using a sliding mode observer. Automatica, vol. 43, no.9, pp.1605-1614. [DOI:10.1016/j.automatica.2007.02.008]
26. [26] El-Koujok M, Benammar M, Meskin N, et al. 2014, "Multiple sensor fault diagnosis by evolving data-driven approach". Information Sciences, vol. 259, pp. 346-358. [DOI:10.1016/j.ins.2013.04.012]
27. [27] Zhang K, Jiang B, Yan X.G, Mao Z, 2016, Sliding mode observer based incipient sensor fault detection with application to high-speed railway traction device, ISA Transaction, pp. 1-11. [DOI:10.1109/IRIS.2016.8066083]
28. [28] Tan C.P. and Edwards, C. 2003. Sliding mode observers for robust detection and reconstruction of actuator and sensor faults. International Journal of Robust and Nonlinear Control, vol. 13, no. 5, pp.443-463. [DOI:10.1002/rnc.723]

Add your comments about this article : Your username or Email:
CAPTCHA

Send email to the article author


Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

© 2024 CC BY-NC 4.0 | Journal of Control

Designed & Developed by : Yektaweb