جلد 14 - جلد 14، شماره 5، ویژه نامه کووید-19                   جلد 14 - جلد 14، شماره 5، ویژه نامه کووید-19,1399 صفحات 153-141 | برگشت به فهرست نسخه ها


XML English Abstract Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Najarzadeh R, dehghani M, asemani M H, abolpour R. Optimal Robust LPV Control Design for Novel Covid-19 Disease. JoC 2021; 14 (S1) :141-153
URL: http://joc.kntu.ac.ir/article-1-834-fa.html
نجارزاده رضا، دهقانی مریم، آسمانی محمد حسن، ابولپور روزبه. طراحی کنترلر بهینه مقاوم LPV برای بیماری جدید کوید-19. مجله کنترل. 1399; 14 (S1) :141-153

URL: http://joc.kntu.ac.ir/article-1-834-fa.html


1- بخش مهندسی کامپیوتر و مهندسی برق، دانشگاه شیراز
چکیده:   (5600 مشاهده)
این روزها تقریباً همه کشورهای جهان با شیوع ویروس کرونا دست و پنجه نرم می کنند. اگر دولت ها و سیستم های بهداشت عمومی اقدامی در برابر شیوع این بیماری انجام ندهند ، اکنون و در آینده تأثیرات شدیدی بر زندگی انسان خواهد داشت ، ازین سو ، چندین استراتژی مداخله ای وجود دارد که می تواند اجرا شود و در نتیجه ، جوامع از تلفات این ویروس ایمن تر می شوند. در این مقاله ، ما از یک مدل ریاضی انتقال اپیدمی ویروس کرونا استفاده کرده ایم و با استفاده از تعدادی LMI ، یک کنترل کننده LPV مقاوم طراحی شده است که به ما در انتخاب و استفاده از روش های مداخله به طور موثر کمک می کند. مدل ویروس کرونا حاوی عدم قطعیت ها در برخی متغیر های حالات و مقادیر پارامترها است. بنابراین ، با استفاده از کنترل کننده مقاوم پیشنهادی ، مقاوم بودن و پایداری مدل در برابر طیف گسترده ای از عدم قطعیت ها تأیید می شود. هدف نهایی طراحی این کنترلر ، به حداقل رساندن تعداد افراد در معرض و آلوده در مدل بخش بخش است. در پایان ، می توان دریافت که استراتژی های کنترلی شامل اقدامات پیشگیرانه ، مراقبت های پزشکی خوب و ضدعفونی سازی محیط می توانند اثرات منفی ویروس کرونا را تا حد زیادی کاهش دهند.
متن کامل [PDF 849 kb]   (1464 دریافت)    
موضوع مقاله: کووید 19
دریافت: 1399/11/4 | پذیرش: 1399/11/24 | انتشار: 1399/12/10

فهرست منابع
1. X. Yan and Y. Zou, "Optimal and sub-optimal quarantine and isolation control in SARS epidemics," Mathematical and Computer Modelling, vol. 47, no. 1-2, pp. 235-245, 2008. [DOI:10.1016/j.mcm.2007.04.003]
2. M. Chan‐Yeung and R. H. Xu, "SARS: epidemiology," Respirology, vol. 8, pp. S9-S14, 2003. [DOI:10.1046/j.1440-1843.2003.00518.x]
3. D. Aldila, H. Padma, K. Khotimah, B. Desjwiandra, and H. Tasman, "Analyzing the MERS disease control strategy through an optimal control problem," International Journal of Applied Mathematics and Computer Science, vol. 28, no. 1, pp. 169-184, 2018. [DOI:10.2478/amcs-2018-0013]
4. M. Tahir, G. Zaman, and T. Khan, "Prevention strategies for mathematical model MERS-corona virus with stability analysis and optimal control," Journal of Nanoscience and Nanotechnology Applications, vol. 1, no. 1, p. 1, 2019.
5. WHO, " Coronavirus disease (COVID-19) pandemic " 2021. [Online]. Available: https://www.who.int/emergencies/diseases/novel-coronavirus-2019.
6. L. Lemecha Obsu and S. Feyissa Balcha, "Optimal control strategies for the transmission risk of COVID-19," Journal of biological dynamics, vol. 14, no. 1, pp. 590-607, 2020, in press. [DOI:10.1080/17513758.2020.1788182]
7. E. E. Team, "Note from the editors: World Health Organization declares novel coronavirus (2019-nCoV) sixth public health emergency of international concern," Eurosurveillance, vol. 25, no. 5, p. 200131e, 2020. [DOI:10.2807/1560-7917.ES.2020.25.5.200131e]
8. S. Zhao et al., "Preliminary estimation of the basic reproduction number of novel coronavirus (2019-nCoV) in China, from 2019 to 2020: A data-driven analysis in the early phase of the outbreak," International journal of infectious diseases, vol. 92, pp. 214-217, 2020. [DOI:10.1016/j.ijid.2020.01.050]
9. A. Ibeas, M. de la Sen, S. Alonso-Quesada, and I. Zamani, "Stability analysis and observer design for discrete-time SEIR epidemic models," Advances in Difference Equations, vol. 2015, no. 1, pp. 1-21, 2015. [DOI:10.1186/s13662-015-0459-x]
10. A. Ibeas, M. de la Sen, S. Alonso-Quesada, I. Zamani, and M. Shafiee, "Observer design for SEIR discrete-time epidemic models," in 2014 13th International Conference on Control Automation Robotics & Vision (ICARCV), 2014: IEEE, pp. 1321-1326. [DOI:10.1109/ICARCV.2014.7064507]
11. I. Zamani and M. Shafiee, "Stability analysis of uncertain switched singular time‐delay systems with discrete and distributed delays," Optimal Control Applications and Methods, vol. 36, no. 1, pp. 1-28, 2015. [DOI:10.1002/oca.2097]
12. R. Sameni, "Mathematical modeling of epidemic diseases; a case study of the COVID-19 coronavirus," arXiv preprint arXiv:2003.11371, 2020.
13. K. Leung, J. T. Wu, D. Liu, and G. M. Leung, "First-wave COVID-19 transmissibility and severity in China outside Hubei after control measures, and second-wave scenario planning: a modelling impact assessment," The Lancet, 2020. [DOI:10.1016/S0140-6736(20)30746-7]
14. A. J. Kucharski et al., "Early dynamics of transmission and control of COVID-19: a mathematical modelling study," The lancet infectious diseases, 2020. [DOI:10.1101/2020.01.31.20019901]
15. K. Prem et al., "The effect of control strategies to reduce social mixing on outcomes of the COVID-19 epidemic in Wuhan, China: a modelling study," The Lancet Public Health, 2020. [DOI:10.1101/2020.03.09.20033050]
16. E. Soewono, "On the analysis of Covid-19 transmission in Wuhan, Diamond Princess and Jakarta-cluster," Communication in Biomathematical Sciences, vol. 3, no. 1, pp. 9-18, 2020.
17. S. Jana, P. Haldar, and T. Kar, "Optimal control and stability analysis of an epidemic model with population dispersal," Chaos, Solitons & Fractals, vol. 83, pp. 67-81, 2016. [DOI:10.1016/j.chaos.2015.11.018]
18. I. Zamani, M. Shafiee, and A. Ibeas, "On singular hybrid switched and impulsive systems," International Journal of Robust and Nonlinear Control, vol. 28, no. 2, pp. 437-465, 2018. [DOI:10.1002/rnc.3876]
19. D. Aldila, M. Z. Ndii, and B. M. Samiadji, "Optimal control on COVID-19 eradication program in Indonesia under the effect of community awareness," Mathematical Biosciences and Engineering, vol. 17, no. 6, pp. 6355-6389, 2020. [DOI:10.3934/mbe.2020335]
20. Z. Abbasi, I. Zamani, A. H. A. Mehra, M. Shafieirad, and A. Ibeas, "Optimal control design of impulsive SQEIAR epidemic models with application to COVID-19," Chaos, Solitons & Fractals, vol. 139, p. 110054, 2020. [DOI:10.1016/j.chaos.2020.110054]
21. G. Rohith and K. Devika, "Dynamics and control of COVID-19 pandemic with nonlinear incidence rates," Nonlinear Dynamics, vol. 101, no. 3, pp. 2013-2026, 2020. [DOI:10.1007/s11071-020-05774-5]
22. T. Péni, B. Csutak, G. Szederkényi, and G. Röst, "Nonlinear model predictive control with logic constraints for COVID-19 management," Nonlinear Dynamics, vol. 102, no. 4, pp. 1965-1986, 2020. [DOI:10.1007/s11071-020-05980-1]
23. E. L. Piccolomini and F. Zama, "Preliminary analysis of COVID-19 spread in Italy with an adaptive SEIRD model," arXiv preprint arXiv:2003.09909, 2020. [DOI:10.1101/2020.04.03.20049734]
24. P. Van den Driessche and J. Watmough, "Reproduction numbers and sub-threshold endemic equilibria for compartmental models of disease transmission," Mathematical biosciences, vol. 180, no. 1-2, pp. 29-48, 2002. [DOI:10.1016/S0025-5564(02)00108-6]
25. F. Otoofi, M. H. Asemani, and N. Vafamand, "Polytopic-LPV Robust Control of Power Systems Connected to Renewable Energy Sourcess," in 2019 6th International Conference on Control, Instrumentation and Automation (ICCIA), 2019: IEEE, pp. 1-6. [DOI:10.1109/ICCIA49288.2019.9030956]
26. R. Abolpour, M. Dehghani, and M. S. Sadabadi, "Designing Controller Parameters of an LPV System via Design Space Exploration," European Journal of Control, 2021. [DOI:10.1016/j.ejcon.2021.02.001]
27. R. Abolpour, M. Dehghani, and H. A. Talebi, "Output feedback controller for polytopic systems exploiting the direct searching of the design space," International Journal of Robust and Nonlinear Control, vol. 29, no. 15, pp. 5164-5177, 2019. [DOI:10.1002/rnc.4673]
28. H. Javanmardi, M. Dehghani, M. Mohammadi, and N. Vafamand, "Bilinear matrix inequality‐based nonquadratic controller design for polytopic‐linear parameter varying systems," International Journal of Robust and Nonlinear Control, vol. 30, no. 17, pp. 7655-7669, 2020. [DOI:10.1002/rnc.5215]
29. R. Najarzadeh, M. Dehghani, M. H. Asemani, and A. Afsharinejad, "LPV Control of an Influenza Model with Vaccination and Antiviral Treatment " International Conference on Control, Instrumentation, and Automation (ICCIA), 2021, Tabriz University, Iran.
30. M. Seidi, M. Hajiaghamemar, and B. Segee, "Fuzzy control systems: Lmi-based design," Fuzzy controllers-recent advances in theory and applications, vol. 18, pp. 441-464, 2012. [DOI:10.5772/48529]
31. G. Herrmann, M. C. Turner, and I. Postlethwaite, "Linear matrix inequalities in control," in Mathematical methods for robust and nonlinear control: Springer, 2007, pp. 130-131.
32. C. Scherer and S. Weiland, Linear Matrix Inequalities In Control. Delft, The Netherlands, 2004.
33. J. Lofberg, "YALMIP: A toolbox for modeling and optimization in MATLAB," in 2004 IEEE international conference on robotics and automation (IEEE Cat. No. 04CH37508), 2004: IEEE, pp. 284-289.
34. C. Yang and J. Wang, "A mathematical model for the novel coronavirus epidemic in Wuhan, China," Mathematical Biosciences and Engineering, vol. 17, no. 3, pp. 2708-2724, 2020. [DOI:10.3934/mbe.2020148]

ارسال نظر درباره این مقاله : نام کاربری یا پست الکترونیک شما:
CAPTCHA

ارسال پیام به نویسنده مسئول


بازنشر اطلاعات
Creative Commons License این مقاله تحت شرایط Creative Commons Attribution-NonCommercial 4.0 International License قابل بازنشر است.

کلیه حقوق این وب سایت متعلق به مجله کنترل می باشد.

طراحی و برنامه نویسی : یکتاوب افزار شرق

© 2024 CC BY-NC 4.0 | Journal of Control

Designed & Developed by : Yektaweb