دوره 5، شماره 1 - ( مجله کنترل، جلد 5، شماره 1، بهار 1390 )                   جلد 5 شماره 1,1390 صفحات 63-50 | برگشت به فهرست نسخه ها

XML English Abstract Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Derhami V, Mehrabi O. Action Value Function Approximation Based on Radial Basis Function Network for Reinforcement Learning. JoC 2011; 5 (1) :50-63
URL: http://joc.kntu.ac.ir/article-1-95-fa.html
درهمی ولی، محرابی امید. تقریب تابع ارزش عمل با استفاده از شبکه توابع پایه شعاعی برای یادگیری تقویتی. مجله کنترل. 1390; 5 (1) :50-63

URL: http://joc.kntu.ac.ir/article-1-95-fa.html


1- دانشگاه یزد
چکیده:   (15738 مشاهده)
مشکل تنگنای ابعاد، یکی از چالش هایی است که کاربرد الگوریتم های یادگیری تقویتی گسسته را در مورد مسائل کنترلی واقعی که دارای فضای حالت و عمل بزرگ و یا پیوسته می باشند محدود نموده است. ترکیب روش های آموزشی گسسته با تقریب زننده های تابعی برای حل این مشکل چندی است مورد توجه محققان قرارگرفته است. در همین راستا در این مقاله یک الگوریتم جدید یادگیری تقویتی عصبی (NRL) بر مبنای معماری نقاد- تنها معرفی میگردد. الگوریتم مذکور از ترکیب الگوریتم یادگیری سارسا با شبکه عصبیRBF به عنوان یک تقریب زننده ی تابعی حاصل شده است و ما آن را "یادگیری سارسای عصبی" (NSL) می نامیم. ورودی های شبکه جفت حالت و عمل های مسأله و خروجی آن تابع ارزش عمل تقریب زده شده می باشد. وزن های شبکه به صورت بر خط با توجه به الگوریتم ارائه شده تنظیم میگردند. به عنوان یک شرط لازم همگرایی ما همچنین وجود نقاط ایستای منطبق بر نقاط ثابت الگوریتم "تکرار تقریب ارزش عمل" برای NSLرا اثبات می نماییم. نتایج شبیه سازی ارائه شده در مورد مسائل خودرو در کوهستان و آکروبات حاکی از عملکرد مناسب تر روش ارائه شده از لحاظ سرعت آموزش و کیفیت عملکرد میباشد.
متن کامل [PDF 538 kb]   (5130 دریافت)    
نوع مطالعه: پژوهشي | موضوع مقاله: تخصصي
دریافت: 1393/3/26 | پذیرش: 1393/3/26 | انتشار: 1393/3/26

ارسال نظر درباره این مقاله : نام کاربری یا پست الکترونیک شما:
CAPTCHA

ارسال پیام به نویسنده مسئول


بازنشر اطلاعات
Creative Commons License این مقاله تحت شرایط Creative Commons Attribution-NonCommercial 4.0 International License قابل بازنشر است.

کلیه حقوق این وب سایت متعلق به مجله کنترل می باشد.

طراحی و برنامه نویسی : یکتاوب افزار شرق

© 2025 CC BY-NC 4.0 | Journal of Control

Designed & Developed by : Yektaweb