Volume 17, Issue 1 (Journal of Control, V.17, N.1 Spring 2023)                   JoC 2023, 17(1): 77-91 | Back to browse issues page

XML Persian Abstract Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

hassanpour R, Khalilipour M M, Sadeghi J, Bidar B. SDP-Based Quality Monitoring with Application to the Tennessee Eastman Process (TEP). JoC 2023; 17 (1) :77-91
URL: http://joc.kntu.ac.ir/article-1-962-en.html
1- University of Sistan and Baluchestan
Abstract:   (877 Views)
Development and implementation of advanced monitoring and control techniques requires measurement of variables which cannot be determined physically or difficult to measure. Soft sensors can be used as a relatively inexpensive alternative for hardware sensors as a suitable solution in the process industries by estimation of easy-to-measure variables using hard-to-measure variables. In this study, design of data-driven soft sensor based on state-dependent parameter modeling method by using local instrumental variable (LIV) have been presented to predict quality variables in Tennessee Eastman (TE) process. Unlike other soft sensor modeling methods, the state dependent parameter modeling method has simple structure and often requires fewer input variables. Moreover, state dependent modeling method using local instrumental variable can identify influencing variables which have been affected the target variables. The performance of identifying technique and proposed soft sensors has been investigated on Tennessee Eastman process. In the present study, LIV based Soft sensor models have been developed using MATLAB software to predict concentration of A and E components. The evaluation results of the proposed models on the test data set report that the root mean squared error (RMSE) for concentration of components A and E are 0.3191 and 0.0174, respectively. The proposed LIV model reduced prediction error (RMSE) for the concentration of component E by 98.18% and 97.6% as compared to Partial Least Squares (PLS) and Dynamic Inner Partial least squares (DiPLS) methods, respectively.
Full-Text [PDF 982 kb]   (348 Downloads)    
Type of Article: Research paper | Subject: Special
Received: 2022/12/3 | Accepted: 2023/05/10 | ePublished ahead of print: 2023/06/12 | Published: 2023/06/22

References
1. [1] Fortuna L., Graziani S., Rizzo A., Xibilia M.G., Soft sensors for monitoring and control of industrial processes, Springer, New York, pp. 2-5, 2007.
2. [2] Khatibisepehr S., Huang B., Domlan E., Soft sensor solutions for control of oil sands processes. The Canadian Journal of Chemical Engineering, Vol. 91. pp., 1416-1426, 2013. [DOI:10.1002/cjce.21833]
3. [3] Khatibisepehr S., Bayesian Solutions to Multi-Model Inferential Sensing Problem, University of Alberta, Doctor of Philosophy, 2013.
4. [4] Li H., Yu D., Braun J., A review of virtual sensing technology and application in building systems, HVAC&R Research, Vol. 17, no. 5, pp. 619-645, 2011.
5. [5] Kadlec P., Gabrys B., Strandt S., Data-driven soft sensors in the process industry, Computers and Chemical Engineering, Vol. 33, pp. 795-814, 2009. [DOI:10.1016/j.compchemeng.2008.12.012]
6. [6] Kaneko H., Arakawa M., Funatsu K., Development of a new soft sensor method using independent component analysis and partial least squares, AIChE Journal, Vol. 55, pp. 87-98, 2009. [DOI:10.1002/aic.11648]
7. [7] Sliskovic D., Grbic R., Hocenski Z., Methods for plant data-based process modeling in soft sensor development, Automatika, Vol. 52, pp. 306-318, 2011. [DOI:10.1080/00051144.2011.11828430]
8. [8] Jang J.-S.R., Sun C.-T., Mizutani E., Neuro-fuzzy and soft computing: A computational approach to learning and machine intelligence, Prentice-Hall Upper Saddle River, NJ, USA, 1997. [DOI:10.1109/TAC.1997.633847]
9. [9] Kaneko H., Funatsu K., Adaptive soft sensor based on online support vector regression and Bayesian ensemble learning for various states in chemical plants. Chemometrics and Intelligent Laboratory Systems, Vol. 137, pp. 57-66, 2014. [DOI:10.1016/j.chemolab.2014.06.008]
10. [10] Young P.C., Recursive estimation and time-series analysis, Second ed., Springer, New York, 2011. [DOI:10.1007/978-3-642-21981-8]
11. [11] Sadeghi J., Modelling and control of non-linear systems using State-Dependent Parameter (SDP) models and Proportional-Integral-Plus (PIP) control method, Lancaster University, Doctor of Philosophy, United Kingdom, 2006.
12. [12] Tavakoli Dastjerd F., Sadeghi J., Shahraki F., Khalilipour M.M., Bidar B., Soft sensor design using multi-state dependent parameter methodology based on generalized random walk method, IEEE Sensors Journal, Vol. 22, No.8, pp. 7888-7901, 2022. [DOI:10.1109/JSEN.2022.3147306]
13. ]13[ بیدار، ب.، طراحی حسگر نرم‌ داده محور به منظور پیش‌بینی برخط کیفیت محصول در برج‌های تقطیر به روش پارامتر وابسته به متغیر حالت، دانشگاه سیستان و بلوچستان، پایان نامه دکتری، 1396.
14. [14] نعیمی ف.، طراحي حسگر نرم افزاری داده¬ محور به منظورپيش¬بيني برخط کيفيت نفت¬خام در واحد نمک‌زدايي/ آب¬زدايي به روش پارامتر وابسته به متغيرحالت، دانشگاه سیستان و بلوچستان، پایان نامه کارشناسی ارشد، 1397.
15. ]15[ هادی‌زاده، گ.، طراحی حسگر نرم داده‌محور به منظور پیش‌بینی کیفیت در فرآیند ناپیوسته صنعتی تولید رزین پلی‌استر، دانشگاه سیستان و بلوچستان، پایان نامه کارشناسی ارشد، 1399.
16. [16] Gharehbaghi H., Sadeghi J., A novel approach for prediction of industrial catalyst deactivation using soft sensor modeling, Catalysts, Vol. 6, pp. 93-109, 2016. [DOI:10.3390/catal6070093]
17. [17] Bidar B., Sadeghi J., Shahraki F., Khalilipour M.M., Data-driven soft sensor approach for online quality prediction using state dependent parameter models, Chemometrics and Intelligent Laboratory Systems, Vol. 162, pp. 130-141, 2017. [DOI:10.1016/j.chemolab.2017.01.004]
18. [18] Bidar B., Khalilipour M.M., Shahraki F., Sadeghi J., A data-driven soft-sensor for monitoring ASTM-D86 of CDU side products using local instrumental variable (LIV) technique, Journal of the Taiwan Institute of Chemical Engineers, Vol.84, pp. 49-59, 2018. [DOI:10.1016/j.jtice.2018.01.009]
19. [19] Bidar B., Shahraki F., Sadeghi J., Khalilipour M.M., Soft sensor modeling based on multi-state-dependent parameter models and application for quality monitoring in industrial sulfur recovery process, IEEE Sensors Journal, Vol.18, No.11, pp. 4583-4591, 2018. [DOI:10.1109/JSEN.2018.2818886]
20. [20] Roja Parvizi Moghadam, Jafar Sadeghi, Farhad Shahraki, Soft sensor model for monitoring and online control based on a dynamic model and local instrumental variable technique, International Journal of Modelling, Identification and Control, Vol.39, No.3, pp. 192-203, 2021. [DOI:10.1504/IJMIC.2021.123484]
21. [21] Downs J.J., Vogel E.F., A plant-wide industrial process control problem, Computers and Chemical Engineering, Vol. 17, pp. 245-255, 1993. [DOI:10.1016/0098-1354(93)80018-I]
22. [22] Ge Z., Song Z., A comparative study of just-in-time-learning based methods for online soft sensor modeling, Chemometrics and Intelligent Laboratory Systems, Vol. 104, pp. 306-317, 2010. [DOI:10.1016/j.chemolab.2010.09.008]
23. [23] Grbic R., Sliskovic D., Kadlec P., Adaptive soft sensor for online prediction and process monitoring based on a mixture of Gaussian process models, Computers and Chemical Engineering, Vol. 58, pp. 84-97, 2013. [DOI:10.1016/j.compchemeng.2013.06.014]
24. [24] Yuan X., Ge Z., Song Z., Soft sensor model development in multiphase/multimode processes based on Gaussian mixture regression, Chemometrics and Intelligent Laboratory Systems, Vol. 138, pp. 97-109, 2014. [DOI:10.1016/j.chemolab.2014.07.013]
25. [25] He Y., Geng Z., Zhu Q., Data driven soft sensor development for complex chemical processes using extreme learning machine, Chemical Engineering Research and Design Vol.102, pp. 1-11, 2015. [DOI:10.1016/j.cherd.2015.06.009]
26. [26] Dong Y., Qin S., Regression on dynamic PLS structures for supervised learning of dynamic data, Journal of Process Control, Vol. 68, pp. 64-74, 2018. [DOI:10.1016/j.jprocont.2018.04.006]
27. [27] Qin Y., Zhao C., Huang B., A new soft-sensor algorithm with concurrent consideration of slowness and quality interpretation for dynamic chemical process, Chemical Engineering Science, Vol. 199, pp. 28-39, 2019. [DOI:10.1016/j.ces.2019.01.011]
28. [28] Guo F., Wei B., Huang B., A just-in-time modeling approach for multimode soft sensor based on Gaussian mixture variational autoencoder, Computers and Chemical Engineering, Vol. 146, pp.107230, 2021. [DOI:10.1016/j.compchemeng.2021.107230]
29. [29] Zhang T., Zhang Sh., He F., Quality prediction and sensitivity analysis of fine chemical products based on support matrix machine, Chemometrics and Intelligent Laboratory Systems, Vol. 231, pp.104716, 2022. [DOI:10.1016/j.chemolab.2022.104716]
30. [30] Li Zh., Jin H., Dong Sh., Qian B., Yang B., Chen X., Semi-supervised ensemble support vector regression based soft sensor for key quality variable estimation of nonlinear industrial processes with limited labeled data, Chemical Engineering Research and Design, Vol. 179, pp.510-526, 2022. [DOI:10.1016/j.cherd.2022.01.026]
31. [31] Yu F., Xiong Q., Cao L., Yang F., Stable soft sensor modeling based on causality analysis, Control Engineering Practice, Vol. 122, pp.105109, 2022. [DOI:10.1016/j.conengprac.2022.105109]
32. [32] Wang Y., Jin H., Chen X., Wang B., Yang B., Qian B., Online-Dynamic-Clustering-Based Soft Sensor for Industrial Semi-Supervised Data Streams, Sensors, Vol.23, No.3, PP. 1520, 2023. [DOI:10.3390/s23031520]
33. [33] Shen b., Yao L., Yang Z., Ge Z., Mode Information Separated β-VAE Regression for Multimode Industrial Process Soft Sensing, IEEE Sensors Journal, Vol. 23, No. 9, pp. 10231-10240, 2023. [DOI:10.1109/JSEN.2023.3261330]
34. [34] Kusolsongtawee T., Kheawhom S., Olaru S., Bumroongsri P., Development of a Data-Driven Soft Sensor for Multivariate Chemical Processes Using Concordance Correlation Coefficient Subsets Integrated with Parallel Inverse-Free Extreme Learning Machine, Engineering Journal, Vol.27, No.6, 2023. [DOI:10.4186/ej.2023.27.6.25]
35. [35] Yin S., Gao X., Karimi H., Zhu X., Study on Support Vector Machine-Based Fault Detection in Tennessee Eastman Process, Abstract and Applied Analysis, Hindawi, 2014. [DOI:10.1155/2014/836895]
36. [36] Russell E.L., Chiang L.H., Braatz, R.D., Fault detection in industrial processes using canonical variate analysis and dynamic principal component analysis. , Chemometrics and intelligent laboratory systems, Vol. 51, pp. 81-93, 2000. [DOI:10.1016/S0169-7439(00)00058-7]
37. [37] Andersen C.M., Bro R., Variable selection in regression-a tutorial, Journal of Chemometrics, Vol. 24, pp. 728-737, 2010. [DOI:10.1002/cem.1360]
38. [38] Reunanen J., Overfitting in making comparisons between variable selection methods, The Journal of Machine Learning Research, Vol. 3, pp. 1371-1382, 2003.
39. [39] Findley D. F., Counterexamples to parsimony and BIC, Annals of the Institute of Statistical Mathematics, Vol. 43, pp. 505-514, 1991. [DOI:10.1007/BF00053369]
40. [40] Giraud C., Introduction to High-Dimensional Statistics: Taylor & Francis, 2014. [DOI:10.1201/b17895]
41. [41] Aho, K., Derryberry D., Peterson T., Model selection for ecologists: the worldviews of AIC and BIC, Ecology, Vol. 95, pp. 613-636, 2014. [DOI:10.1890/13-1452.1]
42. [42] Akaike H., Information theory and an extension of the maximum likelihood principle, in Selected Papers of Hirotugu Akaike, Springer, pp. 199-213, 1998. [DOI:10.1007/978-1-4612-1694-0_15]
43. [43] Sá M., Joaquim P., Applied statistics using SPSS, STATISTICA, MATLAB and R, Second ed., Springer-Verlag, Berlin, Heidelberg, 2007.

Add your comments about this article : Your username or Email:
CAPTCHA

Send email to the article author


Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

© 2024 CC BY-NC 4.0 | Journal of Control

Designed & Developed by : Yektaweb