1. [1] D. H. Titterton and J. L. Weston, Strapdown inertial navigation technology. Institution of Engineering and Technology, 2004. [
DOI:10.1049/PBRA017E]
2. [2] A. Noureldin, T. B. Karamat, and J. Georgy, Fundamentals of inertial navigation, satellite-based positioning and their integration. Springer Science & Business Media, 2013. [
DOI:10.1007/978-3-642-30466-8]
3. [3] M. S. Grewal, A. P. Andrews, and C. G. Bartone, Global navigation satellite systems, inertial navigation, and integration. John Wiley & Sons, 2020. [
DOI:10.1002/9781119547860]
4. [4] P. G. Savage, Strapdown analytics. Strapdown Associates, 2000.
5. [5] R. M. Rogers, Applied mathematics in integrated navigation systems. American Institute of Aeronautics and Astronautics, 2007.
6. [6] S. Thrun, W. Burgard, and D. Fox, Probabilistic robotics. The MIT Press, 2005.
7. [7] A. J. Krener, "The convergence of the extended Kalman filter," in Directions in mathematical systems theory and optimization: Springer, 2003, pp. 173-182. [
DOI:10.1007/3-540-36106-5_12]
8. [8] D. Simon, Optimal State Estimation: Kalman, H∞, and Nonlinear Approaches. John Wiley and Sons, 2006. [
DOI:10.1002/0470045345]
9. [9] G. P. Huang, A. I. Mourikis, and S. I. Roumeliotis, "Observability-based rules for designing consistent EKF SLAM estimators," The International Journal of Robotics Research, vol. 29, no. 5, pp. 502-528, 2010. [
DOI:10.1177/0278364909353640]
10. [10] G. P. Huang, A. I. Mourikis, and S. I. Roumeliotis, "A quadratic-complexity observability-constrained unscented Kalman filter for SLAM," IEEE Transactions on Robotics, vol. 29, no. 5, pp. 1226-1243, 2013. [
DOI:10.1109/TRO.2013.2267991]
11. [11] M. Raitoharju and R. Piché, "On computational complexity reduction methods for Kalman filter extensions," IEEE Aerospace and Electronic Systems Magazine, vol. 34, no. 10, pp. 2-19, 2019. [
DOI:10.1109/MAES.2019.2927898]
12. [12] A. Barrau and S. Bonnabel, "An EKF-SLAM algorithm with consistency properties," arXiv:1510.06263, 2015.
13. [13] A. Barrau and S. Bonnabel, "The invariant extended Kalman filter as a stable observer," IEEE Transactions on Automatic Control, vol. 62, no. 4, pp. 1797-1812, 2016. [
DOI:10.1109/TAC.2016.2594085]
14. [14] P. Rouchon and J. Rudolph, "Invariant tracking and stabilization: problem formulation and examples," in Stability and Stabilization of Nonlinear Systems, vol. 246: Springer, 2000, pp. 261-273. [
DOI:10.1007/1-84628-577-1_14]
15. [15] N. Aghannan and P. Rouchon, "On invariant asymptotic observers," in Proceedings of the 41st IEEE Conference on Decision and Control, 2002, vol. 2, pp. 1479-1484: IEEE. [
DOI:10.1109/CDC.2002.1184728]
16. [16] S. Bonnabel, P. Martin, and P. Rouchon, "Symmetry-preserving observers," IEEE Transactions on Automatic Control, vol. 53, no. 11, pp. 2514-2526, 2008. [
DOI:10.1109/TAC.2008.2006929]
17. [17] S. Bonnabel, P. Martin, and P. Rouchon, "Non-linear symmetry-preserving observers on Lie groups," IEEE Transactions on Automatic Control, vol. 54, no. 7, pp. 1709-1713, 2009. [
DOI:10.1109/TAC.2009.2020646]
18. [18] S. Bonnable, P. Martin, and E. Salaün, "Invariant extended Kalman filter: theory and application to a velocity-aided attitude estimation problem," in Proceedings of the 48h IEEE Conference on Decision and Control, 2009, pp. 1297-1304: IEEE. [
DOI:10.1109/CDC.2009.5400372]
19. [19] P. Martin and E. Salaün, "Generalized Multiplicative Extended Kalman Filter for Aided Attitude and Heading Reference System," in AIAA Guidance, Navigation, and Control Conference, 2010. [
DOI:10.2514/6.2010-8300]
20. [20] S. Bonnabel, "Left-invariant extended Kalman filter and attitude estimation," in 2007 46th IEEE Conference on Decision and Control, 2007, pp. 1027-1032: IEEE. [
DOI:10.1109/CDC.2007.4434662]
21. [21] Y. Luo, M. Wang, C. Guo, and W. Guo, "Research on Invariant Extended Kalman Filter Based 5G/SINS Integrated Navigation Simulation," in China Satellite Navigation Conference, 2021, pp. 455-466: Springer. [
DOI:10.1007/978-981-16-3142-9_43]
22. [22] Z. Zhang, J. Zhao, C. Huang, and L. Li, "Precise and robust sideslip angle estimation based on INS/GNSS integration using invariant extended Kalman filter," Proceedings of the Institution of Mechanical Engineers, 2022. [
DOI:10.1177/09544070221102662]
23. [23] E. R. Potokar, K. Norman, and J. G. Mangelson, "Invariant extended kalman filtering for underwater navigation," IEEE Robotics and Automation Letters, vol. 6, no. 3, pp. 5792-5799, 2021. [
DOI:10.1109/LRA.2021.3085167]
24. [24] A. Ibrahim, A. Abosekeen, A. Azouz, and A. Noureldin, "Enhanced Autonomous Vehicle Positioning Using a Loosely Coupled INS/GNSS-Based Invariant-EKF Integration," Sensors, vol. 23, no. 13, p. 6097, 2023. [
DOI:10.3390/s23136097]
25. [25] X. Zhou, Y. Chen, Y. Liu, and J. Hu, "A Novel Sensor Fusion Method Based on Invariant Extended Kalman Filter for Unmanned Aerial Vehicle," in 2021 IEEE International Conference on Robotics and Biomimetics, 2021, pp. 1111-1116: IEEE. [
DOI:10.1109/ROBIO54168.2021.9739235]
26. [26] L. Chang, F. Qin, and J. Xu, "Strapdown inertial navigation system initial alignment based on group of double direct spatial isometries," IEEE Sensors Journal, vol. 22, no. 1, pp. 803-818, 2021. [
DOI:10.1109/JSEN.2021.3108497]
27. [27] J. E. Humphreys, Introduction to Lie algebras and representation theory. Springer Science & Business Media, 2012.
28. [28] W. M. Boothby, An introduction to differentiable manifolds and Riemannian geometry. Academic press, 2003.
29. [29] G. S. Chirikjian, Stochastic models, information theory, and Lie groups, volume 2: Analytic methods and modern applications. Springer Science & Business Media, 2009.
30. [30] S. C. Hsiung, "Toward Invariant Visual-Inertial State Estimation using Information Sparsification," Master's thesis, Carnegie Mellon University, 2018.
31. [31] Y. Luo, C. Guo, S. You, J. Hu, and J. Liu, "SE2(3) based Extended Kalman Filtering and Smoothing Framework for Inertial-Integrated Navigation," arXiv preprint arXiv:2102.12897, 2021. [
DOI:10.1186/s43020-021-00061-z]
32. [32] M. S. Andrle and J. L. Crassidis, "Attitude estimation employing common frame error representations," Journal of Guidance, Control, and Dynamics, vol. 38, no. 9, pp. 1614-1624, 2015. [
DOI:10.2514/1.G001025]
33. [33] A. Barrau, "Non-linear state error based extended Kalman filters with applications to navigation," Doctoral thesis, Mines Paristech, 2015.
34. [34] A. Barrau and S. Bonnabel, "The geometry of navigation problems," IEEE Transactions on Automatic Control, vol. 68, no. 2, pp. 689-704, 2022. [
DOI:10.1109/TAC.2022.3144328]
35. [35] R. Hartley, M. Ghaffari, R. M. Eustice, and J. W. Grizzle, "Contact-aided invariant extended Kalman filtering for robot state estimation," The International Journal of Robotics Research, vol. 39, no. 4, pp. 402-430, 2020. [
DOI:10.1177/0278364919894385]
36. [36] L. Chang and Y. Luo, "Log-linear Error State Model Derivation without Approximation for INS," IEEE Transactions on Aerospace and Electronic Systems, 2022. [
DOI:10.1109/TAES.2022.3197726]
37. [37] A. Geiger, P. Lenz, and R. Urtasun, "Are we ready for autonomous driving? the kitti vision benchmark suite," in 2012 IEEE conference on computer vision and pattern recognition, 2012, pp. 3354-3361: IEEE. [
DOI:10.1109/CVPR.2012.6248074]
38. [38] A. Geiger, P. Lenz, C. Stiller, and R. Urtasun, "Vision meets robotics: The kitti dataset," The International Journal of Robotics Research, vol. 32, no. 11, pp. 1231-1237, 2013. [
DOI:10.1177/0278364913491297]
39. [39] OxTS, "RTv2 GNSS-aided Inertial Measurement Systems User Manual," [Online]. Available: www.oxts.com/app/uploads/2018/02/rtman.pdf, 2018.
40. [40] T. Qin, P. Li, and S. Shen, "Vins-mono: A robust and versatile monocular visual-inertial state estimator," IEEE Transactions on Robotics, vol. 34, no. 4, pp. 1004-1020, 2018. [
DOI:10.1109/TRO.2018.2853729]
41. [41] Y. F. Jiang and Y. P. Lin, "Error estimation of INS ground alignment through observability analysis," IEEE Transactions on Aerospace and Electronic systems, vol. 28, no. 1, pp. 92-97, 1992. [
DOI:10.1109/7.135435]