دوره 18، شماره 4 - ( مجله کنترل، جلد 18، شماره 4، زمستان 1403 )                   جلد 18 شماره 4,1403 صفحات 65-57 | برگشت به فهرست نسخه ها

XML English Abstract Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Esmaili F. Enlargement of the Domain of Attraction of Polynomial Systems via Observer-Based Controller Design and Transformation into an SOS Programming Problem. JoC 2025; 18 (4) :57-65
URL: http://joc.kntu.ac.ir/article-1-1024-fa.html
اسمعیلی فرهاد. توسعه ناحیه جذب سیستم های چندجمله‌ای با طراحی کنترل‌گر مبتنی بر مشاهده گر و تبدیل به مسئله برنامه ریزی SOS. مجله کنترل. 1403; 18 (4) :57-65

URL: http://joc.kntu.ac.ir/article-1-1024-fa.html


گروه مهندسی برق، واحد بیرجند، دانشگاه آزاد اسلامی، بیرجند، ایران
چکیده:   (119 مشاهده)
تخمین و توسعه ناحیه جذب سیستم های غیرخطی یکی از مباحث چالش برانگیز در حوزه کنترل است. در این مقاله به توسعه ناحیه جذب سیستم های چندجمله ای که دسته ای پرکاربرد از سیستم های غیرخطی هستند، پرداخته شده است. با طراحی کنترل‌گر فیدبک حالت مبتنی بر مشاهده گر (OBC) ، پایداری سیستم حلقه بسته با وجود اشباع بر روی ورودی ، حول مبدا (نقطه تعادل سیستم) پایدار مجانبی گردیده است. به منظور رسیدن به ناحیه جذب وسیع تر حول نقطه تعادل، مسئله طراحی به یک مسئله بهینه سازی چندجمله ای های مجموع مربعات (SOSP) دوخطی تبدیل شده است. مثال های عددی، کارایی کنترل‌گر مبتنی بر مشاهده گر طراحی شده را به منظور توسعه ناحیه جذب، نسبت به استفاده از فیدبک خروجی و در مواردی حتی نسبت به کنترل‌گر فیدبک حالت نشان می دهد.
متن کامل [PDF 1022 kb]   (19 دریافت)    
نوع مطالعه: پژوهشي | موضوع مقاله: تخصصي
دریافت: 1403/5/24 | پذیرش: 1403/10/16 | انتشار الکترونیک پیش از انتشار نهایی: 1403/10/30 | انتشار: 1403/12/30

فهرست منابع
1. [1] V. I. Zubov, "Methods of AM Lyapunov and their application," (No Title), 1964.
2. [2] W. F. Guerrero-Sanchez, J. Guerrero-Castellanos, and V. V. Alexandrov, "A computational method for the determination of attraction regions," in 2009 6th International Conference on Electrical Engineering, Computing Science and Automatic Control (CCE), 2009: IEEE, pp. 1-7. [DOI:10.1109/ICEEE.2009.5393394]
3. [3] O. Hachicho, "A novel LMI-based optimization algorithm for the guaranteed estimation of the domain of attraction using rational Lyapunov functions," Journal of the Franklin Institute, vol. 344, no. 5, pp. 535-552, 2007. [DOI:10.1016/j.jfranklin.2006.02.032]
4. [4] F. Hamidi, H. Jerbi, W. Aggoune, M. Djemai, and M. N. Abdelkrim, "Enlarging the domain of attraction in nonlinear polynomial systems," International Journal of Computers Communications & Control, vol. 8, no. 4, pp. 538-547, 2013. [DOI:10.15837/ijccc.2013.4.152]
5. [5] A. Vannelli and M. Vidyasagar, "Maximal Lyapunov functions and domains of attraction for autonomous nonlinear systems," Automatica, vol. 21, no. 1, pp. 69-80, 1985. [DOI:10.1016/0005-1098(85)90099-8]
6. [6] A. Iannelli, A. Marcos, and M. Lowenberg, "Estimating the region of attraction of uncertain systems with invariant sets," IFAC-PapersOnLine, vol. 51, no. 25, pp. 246-251, 2018. [DOI:10.1016/j.ifacol.2018.11.113]
7. [7] T.C. Wang, S. Lall, and M. West, "Polynomial level-set method for polynomial system reachable set estimation," IEEE Transactions on Automatic Control, vol. 58, no. 10, pp. 2508-2521, 2013. [DOI:10.1109/TAC.2013.2263916]
8. [8] G. Valmorbida and J. Anderson, "Region of attraction analysis via invariant sets," in 2014 American control conference, 2014: IEEE, pp. 3591-3596. [DOI:10.1109/ACC.2014.6859263]
9. [9] G. Valmorbida and J. Anderson, "Region of attraction estimation using invariant sets and rational Lyapunov functions," Automatica, vol. 75, pp. 37-45, 2017. [DOI:10.1016/j.automatica.2016.09.003]
10. [10] A. Iannelli, A. Marcos, and M. Lowenberg, "Robust estimations of the region of attraction using invariant sets," Journal of the Franklin Institute, vol. 356, no. 8, pp. 4622-4647, 2019. [DOI:10.1016/j.jfranklin.2019.02.013]
11. [11] A. Levin, "An analytical method of estimating the domain of attraction for polynomial differential equations," IEEE Transactions on Automatic Control, vol. 39, no. 12, pp. 2471-2475, 1994. [DOI:10.1109/9.362845]
12. [12] J. Awrejcewicz, D. Bilichenko, A. K. Cheib, N. Losyeva, and V. Puzyrov, "Estimating the region of attraction based on a polynomial Lyapunov function," Applied Mathematical Modelling, vol. 90, pp. 1143-1152, 2021. [DOI:10.1016/j.apm.2020.10.010]
13. [13] D. Li, D. Ignatyev, A. Tsourdos, and Z. Wang, "Estimation of non-symmetric and unbounded region of attraction using shifted shape function and R-composition," ISA transactions, vol. 136, pp. 308-322, 2023. [DOI:10.1016/j.isatra.2022.11.015]
14. [14] L. Khodadadi, B. Samadi, and H. Khaloozadeh, "Estimation of region of attraction for polynomial nonlinear systems: A numerical method," ISA transactions, vol. 53, no. 1, pp. 25-32, 2014. [DOI:10.1016/j.isatra.2013.08.005]
15. [15] S. Wang, Z. She, and S. S. Ge, "Inner-estimating domains of attraction for nonpolynomial systems with polynomial differential inclusions," IEEE transactions on cybernetics, vol. 52, no. 3, pp. 1628-1641, 2020. [DOI:10.1109/TCYB.2020.2987326]
16. [16] P. Polcz and G. Szederkényi, "Lyapunov function computation for autonomous systems with complex dynamic behavior," European Journal of Control, vol. 65, p. 100619, 2022. [DOI:10.1016/j.ejcon.2022.100619]
17. [17] M. Yadipour, F. Hashemzadeh, and M. Baradarannia, "Controller design to enlarge the domain of attraction for a class of nonlinear systems," in 2017 International Conference on Research and Education in Mechatronics (REM), 2017: IEEE, pp. 1-5. [DOI:10.1109/REM.2017.8075242]
18. [18] D. Henrion and M. Korda, "Convex computation of the region of attraction of polynomial control systems," IEEE Transactions on Automatic Control, vol. 59, no. 2, pp. 297-312, 2013. [DOI:10.1109/TAC.2013.2283095]
19. [19] G. Valmorbida, S. Tarbouriech, and G. Garcia, "Design of polynomial control laws for polynomial systems subject to actuator saturation," IEEE Transactions on Automatic Control, vol. 58, no. 7, pp. 1758-1770, 2013. [DOI:10.1109/TAC.2013.2248256]
20. [20] M. Barkhordari, M. R. J. Motlagh, and M. Keshavarz, "Enlarging region of attraction in input-output linearization method," in 2008 10th International Conference on Control, Automation, Robotics and Vision, 2008: IEEE, pp. 2244-2249. [DOI:10.1109/ICARCV.2008.4795881]
21. [21] S. Haghighatnia and R. K. Moghaddam, "Enlarging the guaranteed region of attraction in nonlinear systems with bounded parametric uncertainty," Journal of Zhejiang University SCIENCE C, vol. 14, pp. 214-221, 2013. [DOI:10.1631/jzus.C1200213]
22. [22] J. Alizadeh and H. Khaloozadeh, "Enlarging the region of attraction for nonlinear systems through the sum-of-squares programming," Control and Optimization in Applied Mathematics, vol. 4, no. 2, pp. 19-37, 2019.
23. [23] D. Chowdhury, N. Kant, R. Mukherjee, and H. K. Khalil, "Enlarging the region of attraction of equilibria of underactuated systems using sum of squares and impulse manifold method," in 2017 American Control Conference (ACC), 2017: IEEE, pp. 893-898. [DOI:10.23919/ACC.2017.7963066]
24. [24] A. Shirin, M. Martínez-Ramón, and R. Fierro, "Kernel Machine to Estimate a Lyapunov Function and Region of Attraction (ROA) for Nonlinear Systems," IEEE Access, 2023. [DOI:10.1109/ACCESS.2023.3286345]
25. [25] G. Chesi, "Computing output feedback controllers to enlarge the domain of attraction in polynomial systems," IEEE Transactions on Automatic Control, vol. 49, no. 10, pp. 1846-1853, 2004. [DOI:10.1109/TAC.2004.835589]
26. [26] E. Ahbe, P. Listov, A. Iannelli, and R. S. Smith, "Feedback control design maximizing the region of attraction of stochastic systems using Polynomial Chaos Expansion," IFAC-PapersOnLine, vol. 53, no. 2, pp. 7197-7203, 2020. [DOI:10.1016/j.ifacol.2020.12.550]
27. [27] D. Xu, X. Wang, Y. Hong, Z.-P. Jiang, and S. Xu, "Output feedback stabilization and estimation of the region of attraction for nonlinear systems: A vector control Lyapunov function perspective," IEEE Transactions on Automatic Control, vol. 61, no. 12, pp. 4034-4040, 2016. [DOI:10.1109/TAC.2016.2543198]
28. [28] M. Shahbazzadeh, H. Salehifar, and S. Jalil Sadati, "Observer‐based control with enlarged domain of attraction for one‐sided Lipschitz systems subject to input saturation," Optimal Control Applications and Methods, vol. 43, no. 2, pp. 495-511, 2022. [DOI:10.1002/oca.2827]
29. [29] S. Jiang, B. Natura, and O. Weinstein, "A faster interior-point method for sum-of-squares optimization," Algorithmica, pp. 1-42, 2023. [DOI:10.1007/s00453-023-01112-4]
30. [30] L. Kapelevich, C. Coey, and J. P. Vielma, "Sum of squares generalizations for conic sets," Mathematical Programming, vol. 199, no. 1-2, pp. 1417-1429, 2023. [DOI:10.1007/s10107-022-01831-6]
31. [31] G. Chesi, "Rational Lyapunov functions for estimating and controlling the robust domain of attraction," Automatica, vol. 49, no. 4, pp. 1051-1057, 2013. [DOI:10.1016/j.automatica.2013.01.032]
32. [32] W. Tan and A. Packard, "Stability region analysis using polynomial and composite polynomial Lyapunov functions and sum-of-squares programming," IEEE Transactions on Automatic Control, vol. 53, no. 2, pp. 565-571, 2008. [DOI:10.1109/TAC.2007.914221]
33. [33] G. Chesi, A. Garulli, A. Tesi, and A. Vicino, "Solving quadratic distance problems: an LMI-based approach," IEEE Transactions on Automatic Control, vol. 48, no. 2, pp. 200-212, 2003. [DOI:10.1109/TAC.2002.808465]
34. [34] U. Topcu and A. Packard, "Local stability analysis for uncertain nonlinear systems," IEEE Transactions on Automatic Control, vol. 54, no. 5, pp. 1042-1047, 2009. [DOI:10.1109/TAC.2009.2017157]
35. [35] J. Lofberg, "YALMIP: A toolbox for modeling and optimization in MATLAB," in 2004 IEEE international conference on robotics and automation (IEEE Cat. No. 04CH37508), 2004: IEEE, pp. 284-289. [DOI:10.1109/CACSD.2004.1393890]
36. [36] S. Prajna, A. Papachristodoulou, and P. A. Parrilo, "Introducing SOSTOOLS: A general purpose sum of squares programming solver," in Proceedings of the 41st IEEE Conference on Decision and Control, 2002., 2002, vol. 1: IEEE, pp. 741-746. [DOI:10.1109/CDC.2002.1184594]
37. [37] J. F. Sturm, "Using SeDuMi 1.02, a MATLAB toolbox for optimization over symmetric cones," Optimization methods and software, vol. 11, no. 1-4, pp. 625-653, 1999. [DOI:10.1080/10556789908805766]

ارسال نظر درباره این مقاله : نام کاربری یا پست الکترونیک شما:
CAPTCHA

ارسال پیام به نویسنده مسئول


بازنشر اطلاعات
Creative Commons License این مقاله تحت شرایط Creative Commons Attribution-NonCommercial 4.0 International License قابل بازنشر است.

کلیه حقوق این وب سایت متعلق به مجله کنترل می باشد.

طراحی و برنامه نویسی : یکتاوب افزار شرق

© 2025 CC BY-NC 4.0 | Journal of Control

Designed & Developed by : Yektaweb