Volume 18, Issue 3 (Journal of Control, V.18, N.3 Fall 2024)                   JoC 2024, 18(3): 1-9 | Back to browse issues page

XML Persian Abstract Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Zaeri Amirani M, Bigdeli N, Haeri M. The Design of Hyperbolic Sliding Mode Controller based on State Observer for Formation Tracking of Uncertain Multi Agent Systems with Unknown Leader Input. JoC 2024; 18 (3) :1-9
URL: http://joc.kntu.ac.ir/article-1-984-en.html
1- Islamic Azad University,Tehran North Branch
2- Imam Khomeini International University
3- Sharif University of Technology
Abstract:   (1205 Views)
Formation tracking for uncertain leader-follower multi-agent systems is considered in this paper. It is assumed that the leader trajectory is unknown to followers and there is also uncertainty in the model of each agent. The main purpose of this paper is to design a controller that achieves formation tracking for the multi-agent system which is robust against the model uncertainties each agent. For this purpose, a state observer based hyperbolic sliding model controller with finite reaching time has been designed. The designed observer is an Integral Chain Differentiator observer. The observer has been designed to be able to robustly estimate the system states in spite of parametric uncertainties in states and just via measurements of agents’ positions. Formation tracking, on the other hand is achieved via employing tangent hyperbolic sliding surfaces in the sliding mode controller. The analytical investigations and the simulation results are representative that the reaching time to sliding surface is finite and related to the controller parameters. Besides, the control input is limited and the chattering is not observed in the inputs and states.
Full-Text [PDF 974 kb]   (213 Downloads)    
Type of Article: Research paper | Subject: Special
Received: 2024/06/5 | Accepted: 2024/10/12 | ePublished ahead of print: 2024/11/12 | Published: 2024/12/20

References
1. [ ]Wang, J., Yan, Y., Liu, Z., Chen, C. P., Zhang, C., & Chen, K. (2023)." Finite-time consensus control for multi-agent systems with full-state constraints and actuator failures". Neural Networks, 157, 350-363. [DOI:10.1016/j.neunet.2022.10.028]
2. [ ]Amirkhani, A., & Barshooi, A. H. (2022). "Consensus in multi-agent systems: a review". Artificial Intelligence Review, 55(5), 3897-3935. [DOI:10.1007/s10462-021-10097-x]
3. [ ]Shi-Cai, L. I. U., Da-Long, T. A. N., & Guang-Jun, L. I. U. (2007). "Robust leader-follower formation control of mobile robots based on a second order kinematics model". Acta Automatica Sinica, 33(9), 947-955. [DOI:10.1360/aas-007-0947]
4. [ ]Lewis, M. A., & Tan, K. H. (1997). "High precision formation control of mobile robots using virtual structures". Autonomous robots, 4, 387-403. [DOI:10.1023/A:1008814708459]
5. [ ]Balch, T., & Arkin, R. C. (1998). "Behavior-based formation control for multirobot teams". IEEE transactions on robotics and automation, 14(6), 926-939. [DOI:10.1109/70.736776]
6. [ ]Xiong, T., Pu, Z., & Yi, J. (2017). "Time-varying formation finite-time tracking control for multi-UAV systems under jointly connected topologies". International Journal of Intelligent Computing and Cybernetics, 10(4), 478-490. [DOI:10.1108/IJICC-02-2017-0015]
7. [ ]Wang, R., Dong, X., Li, Q., & Ren, Z. (2019). "Distributed time-varying formation control for multiagent systems with directed topology using an adaptive output-feedback approach". IEEE Transactions on Industrial Informatics, 15(8), 4676-4685 [DOI:10.1109/TII.2019.2891714]
8. [ ]Wang, R., Dong, X., Li, Q., & Ren, Z. (2018). "Distributed time-varying output formation control for general linear multiagent systems with directed topology". IEEE Transactions on Control of Network Systems, 6(2), 609-620. [DOI:10.1109/TCNS.2018.2863047]
9. [ ]Zuo, Z. (2015). "Nonsingular fixed-time consensus tracking for second-order multi-agent networks". Automatica, 54, 305-309. [DOI:10.1016/j.automatica.2015.01.021]
10. [ ]Ni, J., Tang, Y., & Shi, P. (2019). "A new fixed-time consensus tracking approach for second-order multiagent systems under directed communication topology". IEEE Transactions on Systems, Man, and Cybernetics: Systems, 51(4), 2488-2500. [DOI:10.1109/TSMC.2019.2915562]
11. [ ]Zuo, Z., Tian, B., Defoort, M., & Ding, Z. (2017). "Fixed-time consensus tracking for multiagent systems with high-order integrator dynamics". IEEE Transactions on Automatic Control, 63(2), 563-570. [DOI:10.1109/TAC.2017.2729502]
12. [ ]Chu, X., Peng, Z., Wen, G., & Rahmani, A. (2018). "Distributed fixed-time formation tracking of multi-robot systems with nonholonomic constraints". Neurocomputing, 313, 167-174. [DOI:10.1016/j.neucom.2018.06.044]
13. [ ]Gao, Z., & Guo, G. (2018). "Fixed-time leader-follower formation control of autonomous underwater vehicles with event-triggered intermittent communications". IEEE access, 6, 27902-27911. [DOI:10.1109/ACCESS.2018.2838121]
14. [ ]Chen, Y. Y., Zhang, Y., & Wang, Z. Z. (2017). "An adaptive backstepping design for formation tracking motion in an unknown Eulerian specification flowfield". Journal of the Franklin Institute, 354(14), 6217-6233. [DOI:10.1016/j.jfranklin.2017.07.020]
15. [ ]Rosaldo-Serrano, M. A., Santiaguillo-Salinas, J., & Aranda-Bricaire, E. (2019). "Observer-based time-varying backstepping control for a quadrotor multi-agent system". Journal of Intelligent & Robotic Systems, 93, 135-150. [DOI:10.1007/s10846-018-0867-8]
16. [ ]Xie, W., Ma, B., Fernando, T., & Iu, H. H. C. (2018). "A new formation control of multiple underactuated surface vessels". International Journal of Control, 91(5), 1011-1022. [DOI:10.1080/00207179.2017.1303849]
17. [ ]Wang, X., Yu, Y., & Li, Z. (2021). "Distributed sliding mode control for leader‐follower formation flight of fixed‐wing unmanned aerial vehicles subject to velocity constraints". International journal of robust and nonlinear control, 31(6), 2110-2125. [DOI:10.1002/rnc.5030]
18. [ ]Wang, J., Han, L., Dong, X., Li, Q., & Ren, Z. (2021). "Distributed sliding mode control for time-varying formation tracking of multi-UAV system with a dynamic leader". Aerospace Science and Technology, 111, 106549. [DOI:10.1016/j.ast.2021.106549]
19. [ ]González-Sierra, J., Ríos, H., & Dzul, A. (2020). "Quad-rotor robust time-varying formation control: a continuous sliding-mode control approach". International Journal of Control, 93(7), 1659-1676. [DOI:10.1080/00207179.2018.1526413]
20. [ ]Wang, J., Xu, Y., Xu, Y., & Yang, D. (2019). "Time-varying formation for high-order multi-agent systems with external disturbances by event-triggered integral sliding mode control". Applied Mathematics and Computation, 359, 333-343. [DOI:10.1016/j.amc.2019.04.066]
21. [ ]Fei, Y., Shi, P., & Lim, C. C. (2020). "Neural network adaptive dynamic sliding mode formation control of multi-agent systems". International Journal of Systems Science, 51(11), 2025-2040. [DOI:10.1080/00207721.2020.1783385]
22. [ ]Alemu, A. E., & Fu, Y. (2017, May). "Sliding mode control of electro-hydrostatic actuator based on extended state observer". In 2017 29th Chinese Control And Decision Conference (CCDC) (pp. 758-763). IEEE. [DOI:10.1109/CCDC.2017.7978573]
23. [ ]Dong, X., Zhou, Y., Ren, Z., & Zhong, Y. (2016). "Time-varying formation tracking for second-order multi-agent systems subjected to switching topologies with application to quadrotor formation flying". IEEE Transactions on Industrial Electronics, 64(6), 5014-5024. [DOI:10.1109/TIE.2016.2593656]
24. [ ]Olfati-Saber, R., Fax, J. A., & Murray, R. M. (2007). "Consensus and cooperation in networked multi-agent systems". Proceedings of the IEEE, 95(1), 215-233. [DOI:10.1109/JPROC.2006.887293]
25. [ ]Wang, X., & Cai, L. (2017). "Aircraft navigation based on differentiation-integration observer". Aerospace Science and Technology, 68, 109-122. [DOI:10.1016/j.ast.2017.05.007]
26. [ ]Yao, D., Li, H., Lu, R., & Shi, Y. (2020). "Distributed sliding-mode tracking control of second-order nonlinear multiagent systems: An event-triggered approach". IEEE Transactions on Cybernetics, 50(9), 3892-3902. [DOI:10.1109/TCYB.2019.2963087]

Add your comments about this article : Your username or Email:
CAPTCHA

Send email to the article author


Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

© 2025 CC BY-NC 4.0 | Journal of Control

Designed & Developed by : Yektaweb