1. [ ]Wang, J., Yan, Y., Liu, Z., Chen, C. P., Zhang, C., & Chen, K. (2023)." Finite-time consensus control for multi-agent systems with full-state constraints and actuator failures". Neural Networks, 157, 350-363. [
DOI:10.1016/j.neunet.2022.10.028]
2. [ ]Amirkhani, A., & Barshooi, A. H. (2022). "Consensus in multi-agent systems: a review". Artificial Intelligence Review, 55(5), 3897-3935. [
DOI:10.1007/s10462-021-10097-x]
3. [ ]Shi-Cai, L. I. U., Da-Long, T. A. N., & Guang-Jun, L. I. U. (2007). "Robust leader-follower formation control of mobile robots based on a second order kinematics model". Acta Automatica Sinica, 33(9), 947-955. [
DOI:10.1360/aas-007-0947]
4. [ ]Lewis, M. A., & Tan, K. H. (1997). "High precision formation control of mobile robots using virtual structures". Autonomous robots, 4, 387-403. [
DOI:10.1023/A:1008814708459]
5. [ ]Balch, T., & Arkin, R. C. (1998). "Behavior-based formation control for multirobot teams". IEEE transactions on robotics and automation, 14(6), 926-939. [
DOI:10.1109/70.736776]
6. [ ]Xiong, T., Pu, Z., & Yi, J. (2017). "Time-varying formation finite-time tracking control for multi-UAV systems under jointly connected topologies". International Journal of Intelligent Computing and Cybernetics, 10(4), 478-490. [
DOI:10.1108/IJICC-02-2017-0015]
7. [ ]Wang, R., Dong, X., Li, Q., & Ren, Z. (2019). "Distributed time-varying formation control for multiagent systems with directed topology using an adaptive output-feedback approach". IEEE Transactions on Industrial Informatics, 15(8), 4676-4685 [
DOI:10.1109/TII.2019.2891714]
8. [ ]Wang, R., Dong, X., Li, Q., & Ren, Z. (2018). "Distributed time-varying output formation control for general linear multiagent systems with directed topology". IEEE Transactions on Control of Network Systems, 6(2), 609-620. [
DOI:10.1109/TCNS.2018.2863047]
9. [ ]Zuo, Z. (2015). "Nonsingular fixed-time consensus tracking for second-order multi-agent networks". Automatica, 54, 305-309. [
DOI:10.1016/j.automatica.2015.01.021]
10. [ ]Ni, J., Tang, Y., & Shi, P. (2019). "A new fixed-time consensus tracking approach for second-order multiagent systems under directed communication topology". IEEE Transactions on Systems, Man, and Cybernetics: Systems, 51(4), 2488-2500. [
DOI:10.1109/TSMC.2019.2915562]
11. [ ]Zuo, Z., Tian, B., Defoort, M., & Ding, Z. (2017). "Fixed-time consensus tracking for multiagent systems with high-order integrator dynamics". IEEE Transactions on Automatic Control, 63(2), 563-570. [
DOI:10.1109/TAC.2017.2729502]
12. [ ]Chu, X., Peng, Z., Wen, G., & Rahmani, A. (2018). "Distributed fixed-time formation tracking of multi-robot systems with nonholonomic constraints". Neurocomputing, 313, 167-174. [
DOI:10.1016/j.neucom.2018.06.044]
13. [ ]Gao, Z., & Guo, G. (2018). "Fixed-time leader-follower formation control of autonomous underwater vehicles with event-triggered intermittent communications". IEEE access, 6, 27902-27911. [
DOI:10.1109/ACCESS.2018.2838121]
14. [ ]Chen, Y. Y., Zhang, Y., & Wang, Z. Z. (2017). "An adaptive backstepping design for formation tracking motion in an unknown Eulerian specification flowfield". Journal of the Franklin Institute, 354(14), 6217-6233. [
DOI:10.1016/j.jfranklin.2017.07.020]
15. [ ]Rosaldo-Serrano, M. A., Santiaguillo-Salinas, J., & Aranda-Bricaire, E. (2019). "Observer-based time-varying backstepping control for a quadrotor multi-agent system". Journal of Intelligent & Robotic Systems, 93, 135-150. [
DOI:10.1007/s10846-018-0867-8]
16. [ ]Xie, W., Ma, B., Fernando, T., & Iu, H. H. C. (2018). "A new formation control of multiple underactuated surface vessels". International Journal of Control, 91(5), 1011-1022. [
DOI:10.1080/00207179.2017.1303849]
17. [ ]Wang, X., Yu, Y., & Li, Z. (2021). "Distributed sliding mode control for leader‐follower formation flight of fixed‐wing unmanned aerial vehicles subject to velocity constraints". International journal of robust and nonlinear control, 31(6), 2110-2125. [
DOI:10.1002/rnc.5030]
18. [ ]Wang, J., Han, L., Dong, X., Li, Q., & Ren, Z. (2021). "Distributed sliding mode control for time-varying formation tracking of multi-UAV system with a dynamic leader". Aerospace Science and Technology, 111, 106549. [
DOI:10.1016/j.ast.2021.106549]
19. [ ]González-Sierra, J., Ríos, H., & Dzul, A. (2020). "Quad-rotor robust time-varying formation control: a continuous sliding-mode control approach". International Journal of Control, 93(7), 1659-1676. [
DOI:10.1080/00207179.2018.1526413]
20. [ ]Wang, J., Xu, Y., Xu, Y., & Yang, D. (2019). "Time-varying formation for high-order multi-agent systems with external disturbances by event-triggered integral sliding mode control". Applied Mathematics and Computation, 359, 333-343. [
DOI:10.1016/j.amc.2019.04.066]
21. [ ]Fei, Y., Shi, P., & Lim, C. C. (2020). "Neural network adaptive dynamic sliding mode formation control of multi-agent systems". International Journal of Systems Science, 51(11), 2025-2040. [
DOI:10.1080/00207721.2020.1783385]
22. [ ]Alemu, A. E., & Fu, Y. (2017, May). "Sliding mode control of electro-hydrostatic actuator based on extended state observer". In 2017 29th Chinese Control And Decision Conference (CCDC) (pp. 758-763). IEEE. [
DOI:10.1109/CCDC.2017.7978573]
23. [ ]Dong, X., Zhou, Y., Ren, Z., & Zhong, Y. (2016). "Time-varying formation tracking for second-order multi-agent systems subjected to switching topologies with application to quadrotor formation flying". IEEE Transactions on Industrial Electronics, 64(6), 5014-5024. [
DOI:10.1109/TIE.2016.2593656]
24. [ ]Olfati-Saber, R., Fax, J. A., & Murray, R. M. (2007). "Consensus and cooperation in networked multi-agent systems". Proceedings of the IEEE, 95(1), 215-233. [
DOI:10.1109/JPROC.2006.887293]
25. [ ]Wang, X., & Cai, L. (2017). "Aircraft navigation based on differentiation-integration observer". Aerospace Science and Technology, 68, 109-122. [
DOI:10.1016/j.ast.2017.05.007]
26. [ ]Yao, D., Li, H., Lu, R., & Shi, Y. (2020). "Distributed sliding-mode tracking control of second-order nonlinear multiagent systems: An event-triggered approach". IEEE Transactions on Cybernetics, 50(9), 3892-3902. [
DOI:10.1109/TCYB.2019.2963087]